Tier 1 Network Services Architecture Options
David Salbego

Original: Feb 11 2002

Last Updated: Feb 19 2002

Version: 0.8
Overview
The purpose of this document is to discuss some of the architectural and implementation choices in regards to four major Tier 1 network services: DNS, Email, FTP, and Web. It is not intended to be an exhaustive document; rather, it will focus on some common issues and solutions to the various problems each network service presents. Benefits and drawbacks to each solution will be noted. This document is a continual work in progress.
DNS Implementation Options
DNS is one of the rare network services that can be easily configured for redundancy. For example, most organizations run at least two local DNS servers. DNS clients are then configured with the IP addresses of both DNS servers. If one DNS server should become unavailable, the clients will automatically jump to the next available DNS server list in their DNS server list.

Most other network services were not born with such flexibility; other software and hardware solutions are required to achieve this type of redundancy.
The issues surrounding whether or not to implement a split DNS solution do not have a major effect on redundancy or load balancing options.

DNS Redundancy and Load Balancing Options
Option #1: Multiple machines on different networks in different buildings
In this option, multiple DNS machines would be placed on different networks in different buildings. Laboratory DNS clients are configured with the IP addresses of these DNS servers. The primary drawback to this method is the difficulty in adding or removing DNS servers (using different IP addresses). All Laboratory DNS clients would have to be reconfigured with the new DNS IP list to function properly.
Option #2: Load balancer fronting multiple back-end DNS servers

In this option, all DNS clients only know of one DNS IP address for Argonne. We leave it up to the load balancer to distribute the incoming DNS requests to the various (and possibly changing) number of Tier 2 DNS servers. This gives us the flexibility of moving DNS servers to different networks and giving them different IP addresses without having to change any DNS clients. It also gives us the flexibility of increasing the pool size of DNS servers without having to change DNS clients.

This model could be implemented today without changing DNS client configurations by using one of the current DNS addresses as the load balancer’s front-end. A primary drawback could be cost, as it would be desirable to use two load balancers for redundancy.
Email Relay Implementation Options
Incoming Laboratory email is sent using SMTP. By utilizing MX records stored in DNS servers, mail is routed to the appropriate email server within the Laboratory. In order to route incoming email through a Tier 1 mail relay, there are two main approaches that can be taken. They are described below.

Approach 1: Add additional MX records

By simply adding an additional MX record for each email server that receives email from the Internet, we can force outside email to be routed to a central email relay. Internal email will not be routed through the central relay. A description of the configuration follows.

Each mail server will have at least two MX records. The first MX record (with a numerically lower preference number, which means it will be attempted first) will point to the appropriate Tier 2 email server. The second MX record (with a numerically higher preference number, which means it will be attempted only if the first fails) will point to the Tier 1 email relay host.

No firewall conduits from the Internet to Tier 2 email servers will exist. The only SMTP conduit from the Internet will be to the Tier 1 email relay server.
An email sent from the Internet to a Tier 2 email server will not get through the firewall. The sending email server will attempt, but fail to deliver the message to the first host in the MX record list (the Tier 2 email server). The sending email server will then attempt to send the message to the second host in the MX record list. The second host will be the Tier 1 email relay server. The sending email server will connect to the Thir 1 email relay server and deliver the message.

The Tier 1 email relay server will have conduits from it to the various Tier 2 email servers. After accepting the incoming email message from the Internet, it will perform the same MX record lookup operation as previously described. However, due to the installed conduits, it will successfully deliver the email message to the appropriate Tier 2 email server.

This approach is appealing due to its simplicity in implementation. One email server at a time could be moved into the new architecture with no effect on other email servers.

This method does not move the Laboratory towards a split-DNS architecture, but it provides an easy method to move into a Tier 1 email relay scheme with no major changes with DNS servers.

Approach 2: Implement a split-DNS architecture

The second approach is to implement a split-DNS architecture at the Laboratory. Today, our DNS servers will give the same answer to a query without regard to who asked the question. For example, no matter who asks, the IP address for www.anl.gov is reported as 146.137.96.68. Anyone in the world can get this answer.

A split-DNS architecture allows for DNS servers to be more selective regarding the information they give out about hosts. For example, we may wish to give different answers to the same question, depending on who made the query. Using this methodology, we can present a different view of our DNS data to the outside world. Instead of external hosts believing we have a large number of email servers internally, we can advertise a single MX host for all incoming mail. Instead of external hosts knowing about every Internet-connected system at the Laboratory, we can be more selective about the information it gives out.
Internally, mail servers exchanging mail would see a different view of our DNS infrastructure. Instead of one mail server to funnel mail through, they would see the many different mail servers available to accept incoming email, and send mail directly to the server that should receive the mail.

By using this ‘view’ capability of a split-DNS infrastructure, we can present a unified MX record view to the outside world to facilitate a Tier 1 email server, while allowing Tier 2 machines to communicate directly with each other to send email.
This architecture puts the Laboratory on the path towards hiding information from the outside world that does not need to know about every host and IP address registered in our DNS servers. Although hiding this type of information through a split-DNS architecture does not mean potential hackers cannot get the information elsewhere, it is sound in principle to not give out any more information than is needed to outside sources.
Mail Relay Service Redundancy and Load Balancing Options
Option 1: Add additional MX records

An additional email relay host could be configured to accept and relay incoming Internet email to Tier 1 email servers. This host would be configured exactly as the primary email relay host. The host would be added with the same or lower (numerically higher) preference as the primary email relay server. If the primary host were to fail, outside mail servers would attempt to contact the backup host based on the MX records received. This solution does not prevent possible email loss or delay, as the primary host could have many messages queued in its spool. However, it is a cheap and simple solution that can work well.
Option 2: Backup Server

A second email relay server could be put into place to serve in a backup role. If the primary server were to fail, administrators could manually move the IP address of the primary server to backup server. In this scenario, we are making the assumption that the backup server is identically configured and could be put into service in a moment’s notice. This strategy has been used with other ECT services in the past and has worked well. However, it is more suited to the ‘scheduled downtime/maintenance’ type of outage as opposed to the unforeseen outage. With the flexibility of MX records, this solution is not ideal.
Option 3: Clustering solution with directly-attached storage

A general description of two node failover configurations is given in Appendix I.

A two node clustering/failover solution could be used to keep the Tier 1 email relay system highly available. However, due to the flexibility of MX records, it may not make much sense to invest in this type of solution when simpler solutions already exist to provide high availability.

Option 4: Hardware load balancer fronting multiple email relays
A hardware load balancer can be used to direct traffic between any number of Tier 1 email servers. The load balancer would be advertised in MX records (a pair can be used for redundancy). The balancer would then be configured with the IP addresses of the Tier 1 email servers. A major benefit with this solution is the ability to dynamically adjust the pool of available servers; if one were to go down, it could be easily removed from the pool. Many load balancers can do this automatically.

A preferred vendor is F5, with their BigIP product. Their BigIP product line can be used for many IP-based applications, including web-based services. Many heavy-duty web sites use these types of products with good success.
Cost can be a drawback with this implementation. Assuming two load balancers for redundancy and at least two email servers, price can go up quickly. However, this architecture allows for easy growth as incoming Laboratory email grows. Additional servers can be added into the pool to meet increasing demands without having to replace current servers.

FTP Implementation Options
The primary concerns with a Tier 1 FTP server include disk storage and expansion capability, network bandwidth and throughput capabilities, and data storage sharing. A primary architecture problem when dealing with services that require a potentially large data store is how to move the data from one machine to another when outages occur. Locally attached storage does not easily move from one machine to another; network attached storage solutions can be slow and cumbersome, and have their own load and reliability problems as well. Some possible solutions are described below.
FTP Service Redundancy and Load Balancing Options
Option 1: Hardware load balancer fronting multiple FTP servers using NFS
A hardware load balancer could direct incoming FTP connection requests to a pool of available FTP servers. However, the FTP servers would all have to share a common data storage device. The most straightforward method of sharing a common data storage device is through a network filesystem, such as NFS.
However, there are performance penalties when using NFS that could become a problem under high load environments. Plus, the NFS server itself becomes a single point of failure, unless it also has redundancy and fault tolerance built into it. Due to cost and performance issues, this solution is not ideal.
Option 2: Backup Server with directly-attached storage
A backup server configured identically to the primary FTP server could be put into place. The backup server would require access to the storage device. One method is to directly attach both the primary and the backup FTP servers to the same storage device. The primary FTP server would ‘own’ the FTP data; if it became unavailable, a set of scripts (written in-house) could be used to migrate the ownership of the data from the primary FTP server to the backup FTP server. Upon picking up the primary server’s IP address, the backup could be put into production in a short amount of time.
The primary drawback to this option is simple: we are describing writing custom clustering software. With the price of clustering software being relatively inexpensive, it makes little sense to write an in-house solution. An off-the-shelf solution provides support, a large amount of testing, and proven solutions.

Option 2: Backup Server without directly-attached storage

A backup server configured identically to the primary FTP server could be put into place without having direct access to storage. Instead, the backup server would mirror the primary server’s data through some manual (scripted) process. The data on the primary server would be copied to the backup server during regular intervals using an incremental-type process to reduce resource usage. In this scenario, the primary server would perform all of the FTP duties as needed. The backup server would most likely perform the duties of a different network service. However, if the primary FTP server were to fail or need to be taken down due to scheduled maintenance, the backup server would be able to take over the role of FTP server with minimal changes.
The major drawbacks to this option include the need for duplicated disk space and the resources needed to keep the data stores in sync. Many other considerations make this option less than ideal.
Option 3: Clustering solution with directly-attached storage
The clustering solution described here is very similar in concept to the first option listed above. The primary difference is the automation. Instead of relying on overworked system administrators to write a custom clustering solution for a specific problem, an off-the-shelf clustering product could be used for this (and other) network services.

For example, two machines connecting to the same external storage subsystem would be clustered using off-the-shelf software. When properly configured, if the primary machine were to fail, the backup machine would take control over the disks used for the FTP service, assume the IP and MAC addresses, and begin the FTP service. The underlying volume management software would make this transition easy for the clustering software.

The primary drawback to this solution is cost, both in hardware and software, as well as in administrator time. As with any complex product, clustering software has a potentially steep learning curve. However, it can be used in many applications, has been used in many large organizations, and has matured over the years. A description of two-node clustering is included near the end of this document for reference.

Option 4: GRID-FTP implementation

[Insert GRID-FTP description, general hardware/software layout, etc]
Web Implementation Options
Any Tier 1 web service implementation will have to initially include a number of web server software packages, including Microsoft’s IIS, Netscape/iPlanet web server, and Apache.

[to be continued]
Web Service Redundancy and Load Balancing Options
[insert description here]
Appendix I: Two Node Clustering (Failover) Configurations
The two node failover configuration is the most common type of failover configuration in place today. Usually, it consists of two identical machines (identical hardware, identical operating systems, identical patch levels, identical cards, etc.) connected to a shared storage subsystem. Each system also contains its own internal storage, usually private hard disks. Each system contains at least two heartbeat connections, usually through two network cards, to keep track of each other. The systems normally have a file management system installed to more easily manage the internal and shared disk space, to help with system failovers. The systems will also have some type of failover management software installed to detect and perform application failovers as needed.
There are two kinds of two-node failover configurations, asymmetric and symmetric. The asymmetric configuration allows one node to do the critical work while the other is in a dedicated standby state. If the node doing the critical work fails, the standby node would take over. The symmetric configuration allows for each node to be doing independent, critical work. If one node were to fail, the second node would take over the work of the first node, while continuing to do its original work.
The safest configuration to use is asymmetric. This ensures that the standby server always be available and will handle the load put on it if the application were to fail over. The drawback with this configuration is cost. The standby server hardware and software will do little but idle during most of its life.
A more commonly used configuration is symmetric failover. This configuration allows for both systems in the cluster to perform work while acting as a backup for one another. If one system were to fail, the other would perform double duty until the failed machine could be brought back online. This configuration makes better use of the hardware dollar spent; however, it has two primary drawbacks, neither of which are major.
The first potential drawback lies in the configuration of the machines. One must be absolutely sure that each application is truly independent from one another. Each application should be able to run on either machine, and on the same machine, with no conflicts. Also, one machine should not rely on another machine for a service. If one machine were to go down, it should have no effect on the second machine, except for the application being failed over.

The second potential drawback centers on performance. When one machine fails, the second machine will pick up the work. However, this can cause an overall performance decrease for the services being provided by that machine. This can be partially alleviated by purchasing extra CPUs or memory for both servers, but cost can become an issue. In reality, as long as one machine can run both applications at a reasonable performance rate, problems should not be severe. After all, it is better to have two services running at a reduced rate rather than one service stop running completely.
[Insert typical two node symmetric failover configuration diagrams]
