Origin of Polycyclic Aromatic Hydrocarbons (PAHs) from the Combustion of Biomass using 13C-Labeling and Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry (GC-C-IRMS)

Phillip F. Britt, A. C. Buchanan III, J. Todd Skeen, Ralph H. Ilgner, and Juske Horita

Chemical Sciences Division
Oak Ridge National Laboratory

Research Supported by Philip Morris USA Inc.
How Does He Do It?
How Does He Do It?
Formation of PAHs in Complex Systems

- **Goal:** Uncover the precursors to polycyclic aromatic hydrocarbons (PAHs) in a burning cigarette

- **Background:**
 - PAHs thought to form from hydrocarbon component of tobacco (paraffins, steroids, terpenes, esters fatty acids)
 - Pyrolysis of hexane extract of tobacco produces 60% benzo[a] pyrene found in pyrolysate and the pyrolysate posses tumorigenic activity *(Beitr. Tobkforsch 1973, 7, 165; Cancer 1958, 12, 1140)*
 - PAH yields: **time**, temperature, and concentration
 - What are the reaction conditions in a burning cigarette?
Classic View of a Burning Cigarette

- **Combustion zone**
 - Temperature: 700 - 900 °C
 - Oxygen consumed by combustion of carbonized tobacco
 - CO₂, CO, H₂O and heat generated

- **Pyrolysis/Distillation zone**
 - Temperature: 200 - 600 °C
 - Oxygen concentration: 0 - 4%
 - Volatile organics produced

- **Puff**
 - Air velocities ≤400 cm s⁻¹
 - Heating rates: ≤500 °C s⁻¹
 - Residence time of volatiles
 - Combustion zone: <1 ms
 - Pyrolysis zone: <5 ms

- **Smoldering**
 - Convection air flow
 - Heating rates: 2-10 °C s⁻¹
 - Residence time of volatiles
 - Hundreds of ms
 - 1-10X more PAHs in SS than MS
Pyrolysis of Hydrocarbons Investigated

Cholesterol \(R = \text{HO—} \)
Cholesteryl stearate \(R = \text{CH}_3(\text{CH}_2)_{16}\text{CO}_2— \)
Cholesteryl oleate \(R = \text{CH}_3(\text{CH}_2)_{7}\text{CH=CH(CH}_2)_{7}\text{CO}_2— \)
Cholesteryl linolenate \(R = \text{CH}_3(\text{CH}_2\text{CH=CH})_3(\text{CH}_2)_{7}\text{CO}_2— \)

Squalene (C\text{\textsubscript{30}})

Stigmasterol

\(\text{β−Carotene (C\text{\textsubscript{40}})} \)

Phytol (C\text{\textsubscript{20}})

Solanesol (C\text{\textsubscript{45}})

A New Analytical Approach Inspired by Colin for Investigation of PAHs

- **Problem:** The temperature and residence times of tobacco components are unknown during smoke formation. Thus, their potential for producing PAHs is unknown.

- **Solution:** Study reactions in a burning cigarette

- **Compound Specific Carbon Isotope Measurement**
 - Variation in the Stable Isotope ratios of Specific Aromatic and Aliphatic Hydrocarbons from Coal Conversion Processes *Analyst* 1998, 123, 1519
 - Use of 13C Labeled Compounds to Probe Coke Formation in FCC *Preprints - ACS, Division of Petroleum Chemistry* 1999, 44(4), 481
Product-Precursor Relations in Smoke

- **Hypothesis:**
 - GC-Combustion-Isotope Ratio Mass Spectrometry (GC-C-IRMS) can be used to determine the precursor to polycyclic aromatic hydrocarbons (PAHs) found in mainstream smoke
 - GC-C-IRMS can bridge the gap between reactions in a burning cigarettes and pyrolysis or combustion reactions

- **Approach:**
 - Spike 2R4F cigarettes with 13C-labeled tobacco precursors (cholesteryl stearate-3,4-13C$_2$) and isolate PAH rich fraction
 - Compare 13C content of phenanthrene, benz[a]anthracene, and benzo[a]pyrene (BaP) before and after spiking

- **Major challenges in experiments:**
 - Separation of PAHs from TPM (baseline resolution)
 - Sensitivity of GC-C-IRMS
\[\delta^{13}C = \left(\frac{^{13}C/^{12}C}_{\text{sample}} \right) - \left(\frac{^{13}C/^{12}C}_{\text{reference}} \right) - 1 \times 10^3 \]

Oxidation Reactor
NiO / CuO / Pt / °C

injector
to FID or closed
X-piece backflush

GC Capillary
double T-piece
Reduction Reactor
Cu/600 °C

He vent
Water Separator
Liquid Nitrogen Trap for CO₂

m/z 44 \(^{12}C^{16}O_2\)
m/z 45 \(^{13}C^{16}O_2\)
m/z 46 \(^{12}C^{16}O^{17}O\)

\((^{13}C/^{12}C) 10^{-5}\) on 0.5 nmol C
Delta Scale

13C atom %

δ^{13}C vs. PDB in [$^0/_{oo}$]

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Meier-Augenstein, W.
J. Chromatogr., A 1999, 842, 351
GC-C-IRMS

Trace GC with FID
GC Combustion III
Finnigan MAT 252 IRMS
ThermoFinnigan Isodat
GC Combustion III Interface
GC-C-IRMS of PAH Standards

Phenanthrene
Benz[a]anthracene
Benz[a]pyrene
Precision of GC-C-IRMS of PAHs

<table>
<thead>
<tr>
<th>Shots</th>
<th>Phenanthrene ng</th>
<th>δ^{13}C</th>
<th>Benz[a]anthracene ng</th>
<th>δ^{13}C</th>
<th>Benzo[a]pyrene ng</th>
<th>δ^{13}C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>100</td>
<td>-25.56 ± 0.13</td>
<td>100</td>
<td>-26.33 ± 0.34</td>
<td>200</td>
<td>-24.34 ± 0.45</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>-26.05 ± 0.32</td>
<td>10</td>
<td>-26.14 ± 0.31</td>
<td>20</td>
<td>-24.82 ± 0.78</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>-25.90 ± 0.34</td>
<td>5</td>
<td>-26.22 ± 0.47</td>
<td>10</td>
<td>-24.0 ± 1.2</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>-25.69 ± 0.98</td>
<td>2</td>
<td>-26.3 ± 1.2</td>
<td>4</td>
<td>-24.3 ± 1.0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>-25.5 ± 1.2</td>
<td>1</td>
<td>-25.90 ± 0.82</td>
<td>2</td>
<td>-24.2 ± 2.5</td>
</tr>
</tbody>
</table>

δ^{13}C = \left[\frac{(^{13}\text{C}/^{12}\text{C})_{\text{sample}}}{(^{13}\text{C}/^{12}\text{C})_{\text{reference}}} - 1 \right] \times 1000$

- Keep sample size >5 ng (ca. 0.4 nmol C) to obtain δ^{13}C = ±1‰
Properties of 2R4F Cigarettes

- Second run of 1R4F reference cigarettes (Low Tar):
 - Contains 1.055 g/cigarette
 - Flue-cured 32.51%
 - Burley 19.94%
 - Oriental 11.08%
 - Maryland 1.24%
 - Reconstituted 27.13%
 - Glycerin 2.8%
 - Isosweet (sugar) 5.3%
 - TPM 11.7 mg/cig, FTC Tar 9.7 mg/cig, Nicotine 0.85 mg/cig
 - PAH yields in mainstream smoke
 - Phenanthrene: 125 ng/cigarette
 - Benz[a]anthracene: 14.5 ng/cigarette
 - Benzo[a]pyrene: 7.0 ng/cigarette
Dusted off Old Smoking Machine

Mainstream smoke generated FTC conditions:
- Puff duration 2 s
- Puff volume 35 mL
- Puff frequency once per min
- Cigarettes 75 F, 60% relative humidity for 48h
New Method Separation of PAHs from TPM

- Extract TPM from Cambridge pads with acetone
- Liquid-liquid extraction:
 - benzene:methanol:ether (2:1:2) vs water (3x)
- Silica Sep-Pak eluting with hexanes
 - TPM in THF precipitated into hexanes (>95% BaP)
- NH₂ Sep-Pak eluting with hexanes
 • Dumont et al. *J. Chromatogr. Sci.* 1993, 31, 371 (>95% BaP)
- Semi-Prep HPLC - Nova-Pak Silica (7.8 x 300 mm)
 - Elute at 4 mL/min hexanes with UV detection (280 nm) and strip with ethyl acetate - Take one fraction with all PAHs
- Semi-Prep HPLC - PAC and Ring-Sep (4.6 x 250 mm)
 - Elute at 1.5 mL/min 99% hexanes:1% CH₂Cl₂ with UV detection. Strip with 90% CH₂Cl₂:10% hexanes and 90% CH₂Cl₂ :10% isopropanol and return to 99% hexanes:1% CH₂Cl₂
 - Collect two fractions
PAHs on PAC-Ring Sep Column

PAHs

TPM

F#1

F#2
GC-C-IRMS (FID) Fraction #1

Phen

Retention time
GC-C-IRMS Fraction #2

BaA

BaP
Isotope Ratio for the PAHs in Smoke

<table>
<thead>
<tr>
<th>PAH</th>
<th>Run 1 (‰)</th>
<th>Run 2 (‰)</th>
<th>Run 3 (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phen</td>
<td>-29.78 ± 0.11</td>
<td>-28.63 ± 0.10</td>
<td>-28.29 ± 0.44</td>
</tr>
<tr>
<td>BaA</td>
<td>-31.63 ± 0.66</td>
<td>-27.81 ± 0.22</td>
<td>-27.36 ± 0.51</td>
</tr>
<tr>
<td>BaP</td>
<td>-4.9 ± 6.9</td>
<td>ND</td>
<td>-25.70 ± 0.27</td>
</tr>
</tbody>
</table>

- PAHs from sixty 2R4F cigarettes smoked under standard conditions
- Isotope ratio of PAHs were similar for the different runs made over 18 months apart.
- BaP in line with expectation
Cigarettes Spiked with PAH Precursor

- Cigarette spiked with cholesteryl stearate-3,4-\(^{13}\)C\(_2\)
 - Average concentration of sterols in tobacco 0.26 wt\% (2 studies)
 - Most steroids in tobacco are esterified
 - 20\% of cholesterol-4-\(^{14}\)C transferred to mainstream smoke
- Spiked with 10 wt\% of the total concentration of sterol (i.e., 0.026 wt\%) to minimize impact of additive
- Desired amount of \(^{13}\)C-labeled steroid was dissolved in hexanes and 20 \(\mu\)L injected via 50 \(\mu\)L syringe rotating syringe while slowly pulling out (Jenkins et al. *Tobacco Sci.* 1975, 19, 115)
- Smoked 60 cigarettes (6 per pad) under standard conditions and isolated PAHs as previously described
13C Content of PAHs in Cigarette Smoke

<table>
<thead>
<tr>
<th>Compound</th>
<th>2R4F (‰) unspiked</th>
<th>2R4F spiked with 13C-labeled steroid (‰)</th>
<th>0.026 wt%</th>
<th>Repeat</th>
<th>New 0.026 wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenanthrene</td>
<td>-28.90 ± 0.78</td>
<td>11.95 ± 0.68</td>
<td>2.51 ± 0.28</td>
<td>14.24 ± 0.65</td>
<td></td>
</tr>
<tr>
<td>BaA</td>
<td>-28.9 ± 2.3</td>
<td>-9.9 ± 1.7</td>
<td>PC</td>
<td></td>
<td>28.0 ± 0.65</td>
</tr>
<tr>
<td>BaP</td>
<td>-25.70 ± 0.27</td>
<td>CP</td>
<td>CP</td>
<td></td>
<td>17.9 ± 1.5</td>
</tr>
</tbody>
</table>

PC = poor chromatography; CP = coeluting peak

- Great agreement with previous results for Phen and BaP isolated
- BaA has coeluting peaks and the number is suspect
- Phenanthrene was enriched when 0.0052 wt% cholesteryl stearate was used -23.88 ± 0.23
- **PAHs enriched in 13C indicates that cholesteryl stearate produces PAHs during smoking!**
Quantitation of 13C-Incorporation

- δ^{13}C values can be converted into atomic fraction (F) and atomic percent ($AP = 100 \times F$)

\[
F = \frac{\frac{^{13}C}{^{13}C+^{12}C}}{\frac{^{12}C}{^{13}C+^{12}C}} = \frac{R_{sample}}{R_{sample} + 1} \quad R_{sample} = \left[\frac{\delta^{13}C}{1000} + 1 \right] \times R_{VPDB}
\]

- Atomic percent excess (APE) = $AP_E - AP_B$ where E is enriched sample and B is background

- Mole percent excess (MPE) = $APE / (\text{number of labeled carbons/total number of carbons in PAH})$; for phenanthrene the denominator is $2/14$
Role of Steroids in PAH Formation

<table>
<thead>
<tr>
<th></th>
<th>Phenanthrene</th>
<th>BaA</th>
<th>BaP</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPE (10 wt%)</td>
<td>0.320%</td>
<td>0.214%</td>
<td>PC</td>
</tr>
<tr>
<td>MPE (Repeat 10 wt%)</td>
<td>0.238%</td>
<td>PC</td>
<td>PC</td>
</tr>
<tr>
<td>MPE (10 wt% New)</td>
<td>0.313%</td>
<td>0.540%</td>
<td>0.465%</td>
</tr>
<tr>
<td>Average yield (µg/g)</td>
<td>1.45 ± 0.2</td>
<td>-</td>
<td>0.13</td>
</tr>
<tr>
<td>Average % Total PAH</td>
<td>2.9 ± 0.5%</td>
<td>-</td>
<td>4.65%</td>
</tr>
</tbody>
</table>

- **Assumptions:**
 - PAH yields similar to that reported for 2R4F
 - Two 13C-labels are found in the PAHs
 - Cholesteryl stearate representative of all tobacco steroids
- Phenanthrene yield lower than that found from pyrolysis of stigmasterol at 600 °C and 1 s (56.6 µg/g)
- **Steroids play a small role in PAH formation in MS smoke**
Summary and Conclusions

- GC-C-IRMS can be used to measure isotopic content of specific smoke constituents and quantitatively determine precursor-product relationships under smoking conditions.
- Technique has good sensitivity and reproducibility, but it is limited by the availability of 13C-labeled reagents, complexity of the sample cleanup, and chromatography.
- Steroids are minor contributors (<5%) to the PAHs found in mainstream smoke.
- Technique can be used to investigate reaction pathways of tobacco components in a burning cigarette (Determine reaction intermediates by looking for the peaks with excess 13C).
- This technique can also be extended to oxygen, nitrogen isotopes (N-PACs), and deuterium.
CONGRATULATIONS COLIN!