UNDERSTANDING MERCURY OXIDATION AND ITS OPTIMIZATION FOR THE DEVELOPMENT OF MERCURY CONTROL TECHNOLOGIES

M. Mercedes Maroto-Valer and John M. Andrésen

Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering (SChEME), University of Nottingham

Storch Award - Prof. Colin E. Snape
A recurring problem...

Colin’s first ACS meeting
The mercury problem

- EPA has identified mercury as a hazardous air pollutant.
- Coal utility boilers are the largest source of anthropogenic mercury emissions (US-EPA study):
 - ~30 tons captured in ash and scrubber residues.
 - ~45 tons emitted to atmosphere.
- Mercury control regulations:
 - In US: Clean Air Mercury Rule (CAMR) and Clean Air Interstate Rule (CAIR), issued by EPA.
 - In Europe: ‘Development of an EU mercury strategy’
An enhanced utilization of the already existing APCDs is considered as a cost-effective approach compared to the development of new and mercury-specific removal technologies.

A combination of existing wet FGD and selective catalytic reduction SCR with electrostatic precipitators (ESP) can reduce significantly emissions for bituminous coals.

However, this combination of APCDs does not provide nearly as high reductions in Hg emissions for low-rank coals.

- Overall mercury removal efficiency of APCDs mainly depends on the occurrence of mercury species and their properties.

- Plants burning coals that emit mainly Hg(0) will face an even greater challenge in achieving a high level of control at acceptable cost.
Mercury capture injecting activated carbons

- Injection of commercial activated carbons is a promising technology.

- Barriers: low concentration of mercury (ppb), complexity of flue gas composition, short residual time of sorbent and poor selectivity:
 - Excess of carbon injected

- Novel sorbents are being developed.
Mercury oxidation: Effect of fly ash components

- Hg(0) shows little tendency to adsorb on sorbents or unburned carbon present in fly ash and is also insoluble in wet FGD units, although it can be adsorbed by brominated activated carbons.

- Hg (II) such as present in HgCl$_2$ (g) is readily adsorbed on fly ash or dedicated sorbents at appropriate temperatures and could be almost totally retained in FGDs because of its high water solubility.

- Heterogeneous mercury oxidation occurs between mercury in flue gas and components of fly ash.
Mercury oxidation: Effect of flue gas composition

- **Heterogeneous chemistry:**
 - Testing in synthetic flue gas on Hg adsorption on activated carbon identified that the interaction between SO2 and NO2 severely impaired the capture of Hg, whereas HCl, NO, and NO2, either individually or combined, enhanced Hg capture.
 - In the presence of fly ash, NO2, HCl, and SO2 have been found to promote Hg oxidation, primarily due to NO2, while NO had an inhibitory effect.

- **Homogeneous chemistry:**
 - Strongly influenced by the coal chlorine content, where Hg(0) reacts with atomic Cl to yield HgCl, followed by the oxidation of HgCl by Cl2 to produce HgCl2.

Pavlish et al. *Fuel Proc. Tech*, 2003, 82,
Research needs

Colin’s PhD award ceremony
Leeds, August 1982
The Nottingham Fuel and Energy Centre (NFEC) is currently involved in a series of national and international research projects to address the following issues in mercury research:

1. To evaluate the influence of flue gas composition, temperature, contact time on mercury species and concentration.

2. To determine the capacity of the different components of fly ashes (different types of unburned particles and mineral phases), for mercury retention.
3. To identify the oxidation mechanisms of mercury on fly ashes.

4. To optimise ash composition, possibly aided by direct injection of individual ash components, to maximise the oxidation of Hg(0) to Hg (II).

5. To develop sorbents by: (i) conducting fundamental studies; and (ii) injection testing of the optimized sorbents to evaluate their performance under actual plant conditions.
Hg test facility for screening adsorbents

- 30°C chamber housing vapour generator bottles
- 35°C chamber housing sorbent tube, mass flow controller, pipework, valves, flow-through cell
- Control box housing timer circuitry, DC voltage supply, SSRs, temperature and flow setting controls
Hg test facility for screening adsorbents
Hg test facility for screening adsorbents

Arrangement of gas flow paths through the rig

30°C

RF1

RF2

RF3

N2

LMVG

MFC

LMVG2

SORBENT TUBE

35°C

V

0

1

0

1

0

1

FLOW CELL IN AAS BEAM

The University of Nottingham
Hg test facility for screening adsorbents

Current version of test rig

- sorbent bed 50 mm long x 6 mm diameter
- saturated Hg vapour in 80ml/min N$_2$ flow through adsorption tube (controlled by mass flow controller)
- vapour generators maintained at 30 – 31°C
- sorbent tube and all downstream pipework at 35°C
- Facility upgraded for studying Hg adsorption at higher temperatures (e.g. 300°C) or the effects of acid gas species, moisture and oxygen on sorbent behaviour
Before breakthrough

C V3 open for 90 s - tube outlet Hg signal

Following breakthrough

B V1 open for 90 s - nitrogen (‘zero’ gas) signal

A V2 open for 240 s - tube inlet signal
Modifications to adsorption rig

This arrangement is suitable for the presentation of ca. 15 - 100 µg/nm³ Hg(0) to the sorbent. It allows completely flexible selection of concentrations of SO₂, HCl and O₂. Low concentrations of Hg(0) are possible by operating the LMVG at a lower temperature (e.g. 0°C) but the lowest level of detection possible with the current CV-AAS set-up is only ca. 50µg/nm³ anyway.
Effect of sorbent dilution on mass loading and breakthrough time

<table>
<thead>
<tr>
<th>Ratio of sorbent to sand (by volume)</th>
<th>% of sorbent in bed (by volume)</th>
<th>Mass of sorbent 70S/1 g</th>
<th>Breakthrough time h</th>
<th>Mass loading of Hg mg/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 : 7</td>
<td>12.5</td>
<td>0.16</td>
<td>1.45</td>
<td>1.44</td>
</tr>
<tr>
<td>1 : 5</td>
<td>16.7</td>
<td>0.21</td>
<td>12.60</td>
<td>10</td>
</tr>
<tr>
<td>1 : 3</td>
<td>25</td>
<td>0.32</td>
<td>49.00</td>
<td>19.5</td>
</tr>
<tr>
<td>1 : 1</td>
<td>50</td>
<td>0.62</td>
<td>98.60</td>
<td>24.9</td>
</tr>
<tr>
<td>-</td>
<td>100</td>
<td>1.23</td>
<td>233.00</td>
<td>33.8</td>
</tr>
</tbody>
</table>

Standard conditions
- Bed dimensions 5 cm x 6 mm
- Hg inlet concn ca.34 mg/nm³
- N₂ carrier flow 80 ml/min
- Sorbent temperature 35°C

y = 212.81x - 29.179
Sorbent development:
Comparison of CFB gasifier chars-1

<table>
<thead>
<tr>
<th>Sorbent (all undiluted)</th>
<th>Mass sorbent g</th>
<th>Breakthrough time h</th>
<th>Breakthrough mass loading mg/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norit-Darco FGD carbon</td>
<td>0.56</td>
<td>2.3</td>
<td>0.67</td>
</tr>
<tr>
<td>ECN Petten CFB gasifier char - wood waste feedstock, test 1</td>
<td>0.38</td>
<td>0.51†</td>
<td>0.21</td>
</tr>
<tr>
<td>ECN Petten CFB gasifier char - wood waste feedstock, test 2</td>
<td>0.46</td>
<td>1.64</td>
<td>0.56</td>
</tr>
<tr>
<td>ECN Petten CFB gasifier char - paper waste feedstock, K710</td>
<td>0.59</td>
<td>5.25</td>
<td>1.6</td>
</tr>
<tr>
<td>ECN Petten CFB gasifier char - paper waste feedstock, K760</td>
<td>0.61</td>
<td>8.5</td>
<td>2.13</td>
</tr>
<tr>
<td>ECN Petten CFB gasifier char - paper waste feedstock, K810</td>
<td>0.62</td>
<td>4.8</td>
<td>1.19</td>
</tr>
</tbody>
</table>
Effect of particle size on Hg uptake

CFB gasification char – paper waste

Standard conditions
- Bed dimensions 5 cm x 6 mm; Hg inlet concn ca.34 mg/nm³; N₂ carrier flow 80 ml/min
- Sorbent temperature 35°C
Sorbents supported
Sorbent development: Inorganic sorbents-1

Summary of breakthrough capacities for “MnO2” – base sorbents as a function of composition

<table>
<thead>
<tr>
<th>Sorbent test conditions: Hg evaporation chamber: 30°C; Test chamber: 35°C; N2 flow: 80 ml/min; Sorbent bed: 5 cm x 0.5 cm i.d.; dilution factor: 3 (sand/sorbent by volume)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity achieved for bed packed solely with sorbent at a temperature of 50°C and a N2 flow of 130 ml/min.</td>
</tr>
</tbody>
</table>
Weight loss from MnO_2 adsorbent containing 22% w/w Hg

Most of Hg adsorption capacity retained until 300$^\circ$C and then steady decrease to 500$^\circ$C.
Sorbent development: Inorganic sorbents-3

SEM & TGA Analysis

Chemical, as opposed to physical, adsorption dominates mercury uptake by the sorbent

Hg distribution on sorbent surface at breakthrough

Very little desorption occurs at temperatures below 300 °C
Sorbent or Catalyst?

Uncompromised performance against poisoning species in different atmospheres

1. No obvious effect was found of the SO\(_2\) pre-poisoning treatment on the sorbent performance, though further tests being conducted using N\(_2\)/SO\(_2\).

2. In the presence of H\(_2\)S, the sorbent behaves more like a catalyst, converting all Hg into HgS. The HgS appears to be easily carried away by the flowing gas stream, rather than deposit onto the sorbent surface, blocking the surface porosity.

3. A capacity of 21.3 wt% was achieved at the exhaustion of H\(_2\)/H\(_2\)S mixture, still without any sign of Hg breaking through.

Test conditions: Sorbent/sand ratio: 3; Gas flow: 80–100ml/min; Temperature: 30 °C; Bed dimension: 0.5cm(id) x 5 cm
Sorbent development: Inorganic sorbents- A winner?

1973 FA. Cup Winners
Sorbent testing capabilities

![Diagram of sorbent testing capabilities](attachment:diagram.png)

- **WET SPECIATION MODULE**
 - Excess sample
 - Raw sample gas in
 - Elemental Hg stream
 - Total Hg stream

- **‘CAVKIT’ CALIBRATOR**
 - MFC
 - HgVG

- **STREAM SELECTOR**
 - KCl
 - SnCl₂ /NaOH
 - Sample stream ex gold trap

- **ANALYSER**
 - Hg sample to gold trap
 - Sample stream ex gold trap
 - Cooling air for gold trap

- **COMPUTER**
 - COMMS

- **ARGON**
 - for carrier and sheath gas flows

- **AIR**
 - Air for generating diluted Hg vapour for calibration
 - Dynamically diluted Hg calibration gas
 - Waste

- **MFC**

- **Diaphragm Pump**

- **Peristaltic pump**

- **HgVG**

- **Air for generating diluted Hg vapour for calibration**

- **Total Hg stream**

- **Elemental Hg stream**

- **Sample stream**

- **Excess sample**

- **Raw sample gas in**

- **Waste**

- **Cooling air for gold trap**

- **Dynamically diluted Hg calibration gas**

- **Air for generating diluted Hg vapour for calibration**

- **ARGON**
 - for carrier and sheath gas flows
Sorbent testing capabilities
Properties of fly ash that affect mercury capacity

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ash Content %</th>
<th>S_{BET} m²/g</th>
<th>$V_{0.95}$ ml/g</th>
<th>D_a nm</th>
<th>Mercury capacity mg/g*</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA1-Dem</td>
<td>3.6</td>
<td>53</td>
<td>0.040</td>
<td>3.0</td>
<td>1.85</td>
</tr>
<tr>
<td>AC-FA1</td>
<td>11.2</td>
<td>863</td>
<td>0.490</td>
<td>2.3</td>
<td>0.23</td>
</tr>
<tr>
<td>Darco Insul.</td>
<td>-</td>
<td>700</td>
<td>-</td>
<td>-</td>
<td>2.77</td>
</tr>
</tbody>
</table>

Note: Darco Insul is a byproduct of Darco FGD.
* Tested using a fixed bed at 138°C using a simulated flue gas

Oxygen functionality of fly ash carbons plays an important role during mercury adsorption, while the surface area does not seem to have a significant impact on its mercury capacity. Maroto-Valer et al., *Fuel*, 2005, 84
Properties of fly ash that affect mercury capacity-2

The physico-chemical properties of a suite of fly ash samples are analyzed and related to their ability to capture mercury vapor.

<table>
<thead>
<tr>
<th>Sample</th>
<th>T (breakthrough), hr</th>
<th>Hg loading, mg Hg/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>45.79</td>
<td>7.30</td>
</tr>
<tr>
<td>FGL</td>
<td>19.78</td>
<td>3.00</td>
</tr>
<tr>
<td>FA2</td>
<td>16.80</td>
<td>2.62</td>
</tr>
<tr>
<td>FA1</td>
<td>15.88</td>
<td>2.50</td>
</tr>
<tr>
<td>FGD</td>
<td>10.46</td>
<td>1.40</td>
</tr>
<tr>
<td>Gasif-1</td>
<td>0.27</td>
<td>0.023</td>
</tr>
<tr>
<td>Gasif-2</td>
<td>0.12</td>
<td>0.011</td>
</tr>
<tr>
<td>CPC-Knockout</td>
<td>0.04</td>
<td>Not determined</td>
</tr>
<tr>
<td>DarkAsh00</td>
<td>immediate</td>
<td>none</td>
</tr>
<tr>
<td>DarkAsh99</td>
<td>immediate</td>
<td>none</td>
</tr>
<tr>
<td>F9830</td>
<td>immediate</td>
<td>none</td>
</tr>
<tr>
<td>Tra-WoodFA</td>
<td>immediate</td>
<td>none</td>
</tr>
<tr>
<td>CPC-Filter</td>
<td>immediate</td>
<td>none</td>
</tr>
</tbody>
</table>

The physico-chemical properties of a suite of fly ash samples are analyzed and related to their ability to capture mercury vapor.
Properties of fly ash that affect mercury capacity-3

Mercury speciation in solid samples by thermal decomposition and AFS:
• Identification and quantification of mercury species
• PSA Thermogram coupled with a Milenium Merlin
Conclusions

- Mercury is a hazardous air pollutant and coal utility boilers are the largest source of anthropogenic mercury emissions
- Mercury control regulations are being developed
- Regulatory and compliance strategies are being developed
- No single control technology can provide efficient and economical control for all power plants
- Significant advances will depend on the understanding of mercury chemistry (oxidation and capture)
The authors would like to thank past and current collaborators and sponsors for their support.
Colin, Congratulations!