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INTRODUCTION 

From March t o  Ju ly  1976 the Laramie Energy Research Center ( L E X )  conducted 
Phases 2 and 3 of t h e  Hanna I1 Underground Coal Gasification (UCG) Experiment i n  
a 3Gft  subbituminous coal seam located a t  a depth of 270 f ee t  near Hanna, Wyoming ( 
"he t e s t  was extensively instrumented by Sandia Laboratories with the objectives o f  
both measuring the i n  s i t u  process d i r ec t ly  and developing remote measurement 
techniques tha t  would be  appropriate for monitoring future large scale gasification 
projects.  Primary among the  remote techniques were passive acoustic, induced 
seismic and e l e c t r i c a l  (2) .  While t h e  data i n  these areas are s t i l l  undergoing 
analysis,  the techniques appear promising i n  t h e i r  a b i l i t y  t o  detect regions of 
affected coal and thereby provide real-time measurement of the process movement. 
In addition t o  these remote techniques, extensive thermal data were obtained during 
the t e s t  by thermocouples located within t h e  coal seam. This paper presents infor-  
mation about t h i s  gasif icat ion t e s t  obtained from an analysis of a portion of these 
thermal data. 

1). 

DESCRIFTION OF EXPERIMENT 

The t e s t  u t i l i zed  the linked ve r t i ca l  well  concept f o r  thick seam gasification. 
As applied a t  Hama t h i s  involves essent ia l ly  a two-step process. F i r s t ,  a high 
permeability l ink between the  process wells i s  established by means of reverse 
combustion. 
a t  t he  other. 
a i r  flow towards the in jec t ion  well. 
seam a t  lower pressures increases substantially,  t he  direction of f ront  movement 
reverses, and forward gasif icat ion proceeds from t h e  injection w e l l  toward the 
production well. 

This involves inject ion of high pressure a i r  a t  one well  and ignition 

Once the  link i s  complete, a i r  flow into the 
A combustion front  is then drawn from the ignit ion source against t h e  

Figure 1 indicates the process and instrumentation well  pattern fo r  the Hanna I1 
experiment. 
with other measurement devices, typical ly  eigbt Chromel/Alumel thermocouples a t  
d i f ferent  locations within t h e  coal seam. 
the overburden. 

The letter-designated Sandia instrumentation wells contained, along 

Additional thermocouples were located i n  

The experiment was conducted i n  two parts.* Phase 2 involved linkage and 
gasification between process Wells 5 and 6. 
drive the 5-6 burn a s  a l i ne  toward the 7-8 well  l i ne ;  however, t h i s  proved unsuccess- 
f u l  and the bulk of Phase 3 consisted of two-well gasif icat ion similar t o  the  5-6 
burn. Most of the interpretat ions presented herein deal with the more heavily 
instrumented Phase 2 pa r t  of the experiment. 

Phase 3 was i n i t i a l l y  an attempt t o  

*Phases 2 and 3 were conducted between Days 96 and 152, and Days 152 and 2U (19761, 
respectively. 
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ANALYSIS 

The majority of the  thermal data obtained during the  t e s t  show very rapid 
temperature r i ses .  
flows and/or the  d i rec t  passage of the  combustion front .  
temperature r i s e s  seen during cer ta in  par t s  of t h e  t e s t  which appear t o  be  t h e  
resu l t  of conduction from a high temperature region. In par t icular ,  these responses 
were observed during reverse combustion linkage and the  l a t e r  stages of forward 
gasification. Such data can b e  analyzed by conduction models t o  provide information 
about the  high temperature regions. 
inverse problem; i . e . ,  the  source w i l l  be  characterized by observations Of i t s  Output. 

The approach taken f o r  solving t h e  inverse problem i n  th i s  paper i s  tha t  of 

This i s  t h e  resu l t  of sudden exposure t o  high temperature gas 
There are, however, 

The analysis const i tutes  the solution of an 

minimizing a leas t  squares comparison of measured data and model calculations. 
determines a solution range f o r  the  conduction model parameters. 
and simplex techniques are used t o  perform the  optimization. 

This 
Both random search 

Linkage Analysis 

During reverse combustion linkage, t h e  affected coal  i s  confined t o  a narrow 
region due t o  the l o w  flow r a t e s  and the  fac t  that thermal energy i s  propagated 
in to  the  virgin coal  predominantly by conduction (an inef f ic ien t  t ransfer  mechanism 
i n  coal). Thus, f o r  analysis purposes, the link8ge path i s  modeled as a cyl indrical  
path of radius a and average temperature, TH. 
difference calculations were made which included the  e f fec ts  of temperature dependent 
thermal conductivity and water vaporization. 
below 200°F, the  constant property ana ly t ica l  expression (3), 

Using this model, numerical f i n i t e  

Results indicate t h a t  f o r  responses 

T ( r , t )  = (TH-TA) (a/r)1/2erfc( (r/a-1)/2(at/a2)’I2) + TA 

can f i t  the  numerically generated r e s u l t s  within f 5% by adjusting the  thermal 
diffusivi ty ,  a, as an empirical function of TH. 
ambient temperature, r is the rad ia l  dis tance from the  sensor t o  +he center of t h e  
path and t is the  time since the a r r i v a l  of the  path i n  the  v ic in i ty  of the sensor. 
Equation 1 was used t o  analyze a l l  t h e  low temperature (< 200°F) responses seen 
during the  Phase 2 linkage. 
there  were thermal responses of at  l e a s t  5’F a t  17 sensor locations w i t h  a t  l e a s t  
one i n  each of the  eight wells nearest t h e  l i n e  between process Wells 5 and 6. 
data a re  sham i n  Figure 2 with the  remainder of t h e  responses i n  these eight w e l l s  
during Phase 2. 
of the coal seam. 
a temperature suff ic ient  f o r  gasif icat ion (taken here as  1500°F) or at an indication 
of thermocouple fa i lure .  

In  Equation 1, T i s  t h e  i n i t i a l  

During t h e  period f r o m  igni t ion on Day 94 t o  Day 114, 

Tnese 

The thermocouple locations a re  expressed i n  f e e t  from t h e  bottom 
For l e g i b i l i t y  the responses are truncated once a leve l  reaches 

The optimization routines re turn values f o r  a, TH, and the posi t ion coordinates 
necessary t o  specify r. 
Wells D and 0, between Wells F and G and between Wells A and C. 
Wells E and B indicate  that t h e  linkage path passed d i rec t ly  by these w e l l s .  
the  speed with which it passed between them and the  fact tha t  t h e  E-B l i n e  coincides 
with a major f racture  direct ion makes it plausible tha t  the path proceeded along a 
fissure near these two wells. 
appropriately analyzed with a conduction model. 

Least squares comparisons were made i n  four regions: near 

Also, 
The responses i n  

Therefore, t h e  data  from these wells could not b e  

The early responses sham i n  Figure 2 along the  Well A-C-F-G‘line indicate  the 
The leveling off seen i n  the  5 - f t  response presence of two separate linkage paths. 
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i n  Well C indicates t h a t  the path near th i s  wel l  probably did not f u l l y  develop. 
The temperature responses seen i n  the two levels  i n  Well C and one l e v e l  in  Well A 
are  consistent with a linkage path of equal s ize  and temperature t o  t h a t  passing 
between Wells F and G b u t  one t h a t  begins t o  cool rapidly a f t e r  about Day 11%. 
A t  approximately the  same t i m e ,  t h e  F-G linkage path proceeded rapidly from Well E 
t o  B which would make t h i s  path t h e  preferred f l o w  direction. 

Figures 3 and 4 summarize the  resu l t s  of the analysis of  linkage data using 
Equation l w h e r e  f o r  the A-C path an addi t ional  term i s  added t o  account for  cooling 
af ter  Day 106. Figure 3 compares typ ica l  calculated and measured responses for a 
number of different  sensor locations. Figure 4 shows the  r e l a t i v e  position and 
s ize  of the linkage paths with respect t o  the  instrumentation wells. 

A number of statements concerning linkage can be made as a r e s u l t  of the 
analysis. 

1. 

2. 

3. 

4. 

5. 

6. 

7.  

Typically, t h e  i n i t i a l  temperature increase shown by the measured data  i s  
greater than that predicted. This i s  consistent with the idea t h a t  the i n i t i a l  
pulse comes from the most act ive combustion zone whereas t h e  long term response 
i s  indicat ive of the average temperatures i n  the  path behind the  combustion 
f ront .  !Chese temperatures are, of  course, lower than the peak combustion 
temperatures. 

The low thermal conductivity of coal  r e s u l t s  i n  la rge  temperature gradients so 
t h a t  small changes i n  distance resu l t  i n  la rge  temperature changes. Thus, t h e  
most accurate interpretat ions that  can be made from t h e  analyses are  those 
re la t ing  t o  position. 

Results consis tent ly  indicate  effective diameters f o r  the linkage path i n  the 
range 2.5 t o  3.5 f t .  

The analysis cannot determine accurately t h e  temperature of t h e  path, because 
temperature has a weak effect  on response, and it i s  also sensi t ive t o  fluctuations 
i n  flowrate. Therefore, t h e  responses r e s u l t  from heat sources whose strengths 
may vary widely Over the  measurement time. 
t u r e s  of 900 t3  1300°F. 

The analysis places the center of the  primary linkage path 5 f t  from Well D, 
3.5 f t  from Well 0, and 4 ft from Well G. Similarly, the other path i s  4 f t  
f rom Well D and 4.5 ft from Well C. 

I n  a l l  the  linkage da ta  there  i s  no evidence of thermal override i n  the  coal  seam. 
The Well A-C path remains about 6 f t  from t h e  bottom of t h e  coal seam and the 
Well F-G path about 5.5 f t  f r o m  the bottom. 

None of the l o w  temperature responses are  inconsistent with e i ther  t h e  analyt ical  
model i t s e l f  or the  interpretat ions resu l t ing  f r o m  the analysis. However, because 
of t h e  nature of inverse problems (especially when there  a re  many unknowns), these 
resu l t s  do not preclude the possibi l i ty  of other mechanisms or models accounting 
for the observed responses. 

The analysis does indicate  path tempera- 

Gasification Analysis 

I n  addition t o  the da ta  obtained during linkage, t h e  responses measured l a t e r  by 
sensors outside the gasif ied zone can b e  analyzed w i t h  conduction models t o  determine 
t h e  boundary of the  affected coal zone i n  the v ic in i ty  of the sensor. 
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When analyzing thermal responses during forward combustion, it i s  important t o  
recognize tha t  cer ta in  regions of the  v i rg in  coal can b e  heated by convective gas flows 
i n  addition t o  possible conduction. In  such regions a pure conduction analysis 
would not be appropriate. 
temperature increases i n  Wells H, I, and J can be considered as primarily due t o  
conduction. 
f l o w  paths established during Phase 2, and two-dimensional isothermal compressible 
flow calculations indicate  t h a t  a t  such distances there i s  very l i t t l e  gas f l o w  i n  
t h e  v i rg in  coal. 
pr ior  t o  the  upturn which has  been characterized as due t o  conduction. Therefore, 
conduction models are appropriate f o r  analyzing the  responses i n  these w e l l s  as 
affirmed by the  excellent agreement so obtained between calculations and measured 
data. 

A number of fac tors ,  however, indicate  t h a t  the i n i t i a l  

A l l  these wells l i e  20-30 f t  away f r o m  t h e  i n i t i a l  high permeability 

Also, none of the thermocouples show any signif icant  preheating 

The model chosen t o  analyze these responses i s  t h a t  of a f ixed w a l l  which 

In  order t o  account f o r  boundary movement a dumq i n i t i a l  time 
experiences a s tep jump i n  temperature t o  some typica l  gasif ied zone value at the  
i n i t i a l  t i m e .  
increment i s  used. This t i m e  increment allows f o r  the  establishment of a preheat 
zone which models t h e  thermal prof i le  preceding a slowly moving boundary. 
dimensional calculations show tha t ,  due t o  the  insulat ing propert ies  of the  coal, a 
one-dimensional expression can be used t o  determine t h e  normal distance from the  
sensor t o  the boundary even if  the  boundary i s  ver t ica l ly  nonuniform. 

Two- 

For t h e  one-dimensional case the  appropriate ana ly t ica l  expression (3) i s  

T(x,t) = (TH-TA)erfc(x/2 &) + TA 

The variables here have the same meaning as i n  Equation 1 except t h a t  x is  the 
distance f r o m  t h e  sensor t o  the nearest point on the  boundary. 
the  linkage analysis, f o r  low temperature responses the  analyt ical  expression i n  
Equation 2 provides good agreement with numerical calculations t h a t  include property 
var ia t ions and vaporization when a i s  an empirically determined function of T 

A s  was t h e  case f o r  

H’ 
The data analyzed using t h i s  model were the responses seen l a t e  i n  Phase 2 

i n  Wells H, I, and J. Plots  of these data are presented i n  Figure 5. The agreement 
between the  measured data  and model calculations i s  qui te  good and be t te r ,  i n  f a c t ,  
than was seen i n  the linkage data analysis. 

The analysis of the  Well H, I and J responses lead t o  a number of conclusions 
concerning gasif icat ion i n  the  l a t e r  stages of Phase 2. 

1. The f i n a l  boundary at the  end of Phase 2 (Day 152) for  t h e  10-f t  t o  20-ft 
l eve ls  was approximately 4-5 ft f r o m  Well J and 3-4 f t  f r o m  Wells H and I. 

2. The v e r t i c a l  s t ructure  of the f i n a l  boundary was such t h a t  it extended about 
1 f t  fur ther  out f r o m  the reaction zone center a t  t h e  10-ft l e v e l  than a t  t h e  
20-f t  level. 

The predominant reason f o r  the time lag  between t h e  responses at  the lower and 
higher levels  i s  not the  difference i n  f i n a l  extent but ra ther  t h e  upper leve ls  
j u s t  reach the f i n a l  posi t ion l a t e r  i n  time. This conclusion implies tha t  , the  
combustion front ,  a t  l e a s t  i n  the  direct ions perpendicular t o  t h e  process w e l l s ,  
a t  l a t e r  times i s  not mwing uniformly across the seam, but  ra ther  it i s  
pivoting about the  points of fur thest  extent near t h e  bottom of t h e  seam. 
pivoting movement i s  i l l u s t r a t e d  more c lear ly  i n  Figure 6 which shows a 

3. 

This 
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schematic diagram of t h e  gasified zone boundary movement during the l a t e r  stages 
of Base  2 i n  the  v i c in i ty  of Well I. The l i nes  drawn are  approximations t o  the 
f i n i t e  thickness boundary (* 2 f t )  containing pyrolysis and gasif icat ion regions. 
mey are based on t h e  information obtained from thermal data as t o  the f i n a l  
position, time of a r r i v a l  a t  t h a t  posit ion and minimum horizontal  velocity ju s t  
p r io r  t o  reaching t h a t  posit ion.  Also, the boundary l i ne  on Day 135 i s  con- 
s i s t en t  with the contours drawn i n  Figure 7. 
levels  i n  the  10-ft  to 20-ft region. 
by conduction in  the over and underburden, respectively. None of t he  responses 
outside the 10 t o  20 f t  range are inconsistent with the extrapolated boundaries 
indicated by dashed l i n e s  i n  the  figure.  

m i c a 1  boundary temperatures necessary f o r  g o d  agreement between calculated and 
measured responses were i n  the  range of 1150'F t o  1 6 0 0 ~ ~ .  

The actual  data used are  fo r  
The 30-ft and 0 - f t  responses are distorted 

4. 

Data Interpretation 

Having completed an analysis of the predominant conduction responses seen during 
Phase 2, it i s  of i n t e r e s t  t o  correlate these analyses with t h e  r e s t  of the thermal 
data i n  an attempt t o  p i c tu re  the structure of t he  gasified zone as a function of 
time. Figure 7a shows the gasified zone on 
Day I35 divided in to  two sections. The dashed l i ne  i s  an average extent fo r  the 
0-ft t o  10-ft  l eve l  within the  coal seam. 
extent fo r  the 10-ft t o  30-ft  levels.  The reason f o r  such a division i s  obvious from 
the considerable difference i n  areal  extent between the  two zones indicated in  the 
figure.  
lower levels i n  Wells A and D and the lack of such i n  t h e  upper levels,  extrapolation 
of t he  boundaries and a r r i v a l  times indicated by analysis of the Well H, I, and J 
data, and the 20-ft responses i n  Wells F, G and 0. 
t o  agree w i t h  LERC's material  balance calculations as t o  the amount of coal gasified. 
Figure 
These contours are  more d i f f i c u l t  t o  draw since the only hard data i s  the boundary 
near t he  H-I-J l i ne  and, of course, t he  need t o  agree with material balance calculations 
Therefore, it was necessary t o  extrapolate from the upper level  responses i n  Wells A, 
D and G t o  draw the contours on Day 152. The effect  of the assymetry i n  the  primary 
linkage path is  evident i n  the  shape of t he  gasified region. 

Figure 7 represents such an attempt. 

The sol id  l i n e  represents an average 

The primary inputs f o r  constructing these contours are the  responses a t  the 

The contours were also constrained 

shows the  extent of the same two zones a t  t he  completion of phase 2. 

While continuous boundaries of a gasified zone can be drawn, it i s  important t o  
recognize tha t  t he  gas i f ica t ion  mechanism probabb var ies  along the  boundary. 
example, the rap id  responses i n  the  l o w  levels  of Wells A and C would seem t o  be 
character is t ic  of the advance of a combustion front  and i t ' s  associated steep 
temperature gradients. 
probably t h e  r e su l t  of expansion about t h e  linkage path due t o  a high temperature 
oxygen depleted gas stream and reduction reactions. 

For 

I n  contrast ,  the  more gradual r i s e s  seen i n  Well D are 

Takentogether, Figures 7a and 'j'b provide a picture  of how the UCG process 
proceeded i n  t h e  Hanna seam during forward gasification. There i s  an i n i t i a l  period 
Of rapid horizontal growth a t  about the l eve l  of the linkage path perhaps due t o  
higher i n  s i t u  permeability i n  t h e  horizontal  direction. During t h i s  period the 
ve r t i ca l  growth i s  slower and i s  confined t o  the region near t he  inject ion vel1 and 
adjacent t o  the  linkage path. 
low i n  the seam slows, and during the l a t e r  stages of gasification the boundary 
"pivots" about t he  poin ts  of fur thest  extent and moves towards the roof of the coal 
seam aided by subsidence. 

Then a t  some point the r a t e  of horizontal  extension 
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Three additional observations support t h i s  description of the process. F i r s t ,  
i f  the  gasif ied zone expands very rapidly i n  the  lower t h i r d  of t h e  seam, then one 
m i g h t  expect t o  see s m e  combined convection-conduction heating t o  upper leve l  
thermocouples from below prior t o  t h e i r  experiencing high gasif icat ion temperatures. 
Examination of the 15 and 20-ft responses i n  nearly a l l  the wens shars jus t  +,hat 
trend. 
seen a t  the  0, 5 ,  and 10-ft levels. 
be calculated by conduction from a high temperature boundary 2 t o  3 f t  away. 
induced seismic data  (4) on Day U 2  indicate  a region of affected coal  4 t o  6 ft 
beyond Well A a t  about the  5-ft  level .  
at  t h e  lower levels  since it i s  c lear  from material balance considerations alone that  
at the  upper levels  the  gasif ied zone can have nowhere near t h i s  extent. 
passive acoustic source locations i n  the  overburden, which a re  indications of the  
zone extending t o  the  roof of t h e  coal  seam, are  predominantly located t o  the  
inject ion wel l  s ide of the Well A-C-F-G l ine .  
which show greater v e r t i c a l  extent i n  t h i s  region. 

Almost without exception, t h e  upturns a t  these levels  are  slower than those 
Many of t h e  responses a re  not unlike whak would 

Second, 

This again indicates  much more rapid expansion 

Finally, 

This i s  consistent with the  contours 

CONCLUSIONS 

The thermal data analysis  indicates the  reverse combustion linkage path i n  t h e  
Hanna seam was approximately 3 f t  i n  diameter. 
respect t o  the instrumentation w e l l s  was mapped and no evidence of v e r t i c a l  override 
was detected. 
responses from within the  gasif ied zone indicate t h a t  the  i n i t i a l  stages of forward 
gasif icat ion shared rapid horizontal expansion at about t h e  level of the  linkage 
path, whereas, a t  l a t e r  stages v e r t i c a l  mwement becomes more rapid and leads t o  
f ina l  boundaries t h a t  are nearly ver t ica l .  

The posi t ion o f  the  path with 

The analysis of boundary thermocouple data combined w i t h  thermal 
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Figwe 1. Well Pattern for  Phases 2 and 3 of t h e  Hanna I1 Experiment. 
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Figure 2a. Temperature-Time Frofiles During Phase 2 i n  Wells A and B. 
(Thermocouple Locations ( f ee t )  Referenced t o  Bottom of 
30-foot Coal Seam.) 
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Examples of Measured and Calculated 
Thermal ResDonses Util ized i n  Linkage Day 115 Based on Analvsis of Thermal 
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Figure 5 
Measured and Calculated Thermal Responses 
Outside Reaction Zone Boundary a t  End of 
Phase 2. 
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Schematic Diagram of Reaction Zone Boundary Movement Near Well I 
During Phase 2. 
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Figure 7. Delineation of Affected Coal Regions a t  2 Times During Phase 2. 
Boundary Locations Based on Thermal Analyses and LERC Material 
Balance Calculations. 
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