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IhTBODUCTION 
T’ne chemicd w t i o n s  that accompany the extraction of volatiles (1) from hydrocarbon resouma 

a i th  supczaitii mlvents a n  freyaentb obscnrcd by the camplojties of t h e  reaction system. In 
contmz? the cornpazithe simp- of model compound structures and product spectra p e d t  
resolution of ructieo fundament& (2) and snbsequent inference of the factors that control the 
rractiom of real reacting syrtcmr. €kr& we use model compouads to probe the kiuetids 01 ppzolpss 
and sohow rrsctions that likely ODIU during the extraction of vofotiks from coals and lignb. 

P- studies of the ratctions of guaiacol (orthomethoxgphenol) (3) and benrpl phenyl amine (4) 
m snperaizicd water elucidated p a r d e l  hydrolysis and pyrolysis pathways, the selectivity to the latter 
m-g line&- with ada density. Reactant decomparition kinetics w e n  interestingly nonlinuv in 
7Flter densit)-, which WTS consistent with a t  l u s t  two possible mechanistic interpretations. The fvst 
p c s s i b i  vas that of unusual ‘uge’ or solvent effects attributable to operation in dense fmids. The 
second p a s i b i i  - a draightforward reaction scheme wi th  p r e s s d e p e n d e n t  rate constants. 
Hereh m present our andpsis of these two mechanistic possibilities for reaction in water and reaction 
m methanol 

W E E M E N T A L  

Tabk I summarizes rhe fcperimentd conditions of reactants’ concentration, solvent b d i g ,  and 
holding time; J1 rrsctions were at 386OC. Mcasnred amounts 01 the commercially available (Aldrich) 
sub- benql phenyl amine P A ) ,  the solvent (water or methanol) and the inert internal standard 
biphenyl -re loaded into room temperature Ytobing bombs’ that have been described elsewhere (4).  
Sealed -rs wen imrmrsed into a nnidmed sand bath held consstant d the d 4 m d  reaction 
tcmpcamn, ~ h i c b  was artaiDed by the reactors in about 2 min; this heat-up period was small 
compared ro u k i i  reaction times (up to 60 min) and RW, in any case, identical for all mns. 
Products sere identGd b r  GGMS and quantitated by GC as described &where (la). 
BESULTS 

Table II summarizes the  major products observed from BPA reaction neat, in tetraiin, in water, 
and in methanol- BPA dLappcarance kinetics M sbown in Figure 1. Neat pyrolysis of BPA led to 
tohen+ d i n e ,  and benralsniline a5 major products and minor products including l,%dipbenylethane, 
d i p h e n + e t b e ,  and % b e r u + d i n e .  Thermolj-sii in tetralin yielded quaiitativeb similar result(, with 
the s&zxi+y to toluene and aniline increased and sektivity to benralaniline decreased relative to neat 
p++. BPA reaction in water RS to benzyl alcohol and benzaldehyde as well as the neat pyrolysis 
products- BPA readon in methanol produced a product spectrum simila~ to that found from reaction 
in vatu, ui th  the addition of K - m e t h p k n i e  as a major product. 

The &et of water density on BPA convenion and product selectirity, for a constant reaction 
t i m e  of 10 minutes, is shown in Figurr 2. BPA conversion passad through a miniium at a reduced 
arfu d- of 0.2, whereas the s e k c t m v  to each individual product was essentially lineat in solvent 
loading. T h e  yield 01 anil ine was relativeb unaffected by solvent density but toluene and benralaniie 
yields dsoaased and total yield of oxygenated products (benraldehydr p l u  benrgl dcohol) iucrewd 
with in- in solvent loading. 

The reaction 01 BPA in methanol, at a constant rsaction time of 60 minutes, was qualitatively 
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similar, 2s anstrated in F i i  3. Here the minimum convvsion occurs at a reduced methanol density 
of Ob and the selectivity to each partkuhr product was once again apparently linear in solvent 
a g .  The yield of toluene was rrLtirely nndected by changes in the methanol density, wbereas 
the yields of aniline and benxdaniline decreased and that of N-methykrriline and total oxygenakd 
product  in-d as the solvent loading hcreased. 

Tbe foregoing results are consistent with the reaction pathways shown in Figure 4. The neat 
pyrolysis pathway, illustrated m Fignre 4% requires two molar equivalents of BPA for the formation of 
one mole u c h  of toluene, aniline, and b e n r d a n i e .  The network for thermolysis in tetralin is a 
comb- of the  nest pyrolysis patbaa]. ( F i i  44 and a pathway wberein tetraIin and BPA react 
to one mole each of toluene, miline, an2 0.5 molar equivalents of naphthalene. Figure 4b depicts a 
k t  s o l v o e  pathway for the 'active' aolvents w a r  and methanoL Here the BPA can either (i) 
react by the neat p p l p ~  pathway witi the addition of another BPA, to +e one mole each of 
toluene, aniihe, and benralanihe or (ii) can proceed thmugh the solvation pathway to give oxygenated 
products and aniline (or N-methykniline for reaction in methanol). T h e  yield of oxygenated products 
would he crpcted to in- while the toluene yield would decrease as the solvent loading is 
mc& the + I d  of N-methykoiline would be expected to increase &h increases in solvent lording 
during ructiDn in methanol 

Tbe minima in BPA conversion observed for reaction of BPA in water and methanol were 
erplained by allowing t h e  rate constantr of Figure 4b to be dependent on pressure. For ea& solvent 
loading (and thns pressure) rmdied the psendcdkst order rsk constants for the pathways of Figarr 4h 
are shown m Table 3. These were cdcdated using a sequential simplex search where the objective 
function the  square of the dev&io= between predicted and experimental values. The pressure 
g e n e a d  br water vh5 estimued horn PIT data (7) and the methanol pressure was estimated using a 
Peng-Rob- equation of state. 

DISCUSSION 

BPA M a i o n  in water or methanol +lded solvation products in addition to those observed from 
pyrolysis neat. P A  conversion passed throngh a minimum at a reduced solvent density of 0.6 and 0 2  
for reactb m methanol and wakr respectively; product selectivity was essentially linear in solvent 
density. These & are consistent with reaction networks compriring parallel pyrolysis and solvolysii 
pathways with p d e p e n d e n t  rate colrstanh; the selectivity to the latter pathway increased with 
increa~hg solvent loading. P d t s  qualitarisely similar to those observed in F q r e s  2 and 3 have been 
noted prcrionsly for reactions b solution with reaction networks containing pmurc-dependent rate 
constants (8) 

T h e  elJats of pressure on the rates cf chemical reactions in solution have been summarized ( 5 4 .  
There efjects can be interpreted in terms 0:' transition state theorp, which shows that 

where AV; k the volume of actbation, ic. the difference between the partial molar volumes of the 
-tats a d  the activated state. AVJ is strictly a function of pressure which 'is often approximated 
by the up-n 

ln k = a + bP + cPz. 

&nu*, volumes of activation are of the order of ~ 2 5  cm3 and thus rate constants for reactions in 
solution do not begin to show a signS-t pressure dependence Deloa approximately loo0 atm (5). 
h0, the volume of activation is often broken into two separate values, A,V$ and AzV$, where the 



I 

former rep-ts a structural contribution and the la te r  reprrsents a change in the volume of tbe 
solvent shd. 

It k important to n o k  that, although the operating pressures in the present study were of the 
order of 10 - loo0 ah., the minimum in n a c b n t  conversion, from which we have infemd a likeb 
Linetic deet of prrssure, occurred at pressures of only 100 atm. Thus the apparent global volume of 
activation associated with the present interpretation of the non-linear kinetics of Figures 2 and 3 would 
be an order of magnitude larger than that observed for liquid systems. These apparent volumes of 
activation may consist of at least three components; first, AIVt Mscciakd with s t r n c t d  changes, 
second, AzVf & with changes in tbe solvent shell, and third, a contribution due to the 
c o m p d m  of the fluid. The  supercritical fluid is highly compresible in the critical region and UC 
of &t u n q n i v d  equation of state for the =tion &we has hindered unambiguous andysii of the 
compressibilitp term. Furtber analysis is being undertaken to ascertain the quantitave contributions of 
each of tbese factors to the  overdl global volume of activrtion. 
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Sdrmt 

Trble 1 
Experimental conditions lor reaction of BPA 

BPA 
concentration 

(m0lW) 

.E4 
59 
59 
39 

solvent 
loading 
(4 

325 
0.1 - 35 
0.02 - 4 5  

Table 2 
Major products of BPA thermolysis 

Prodons 

Kert Toluene, Aniliae, Bendaniline 

Tetdin Toloen+ Aniline 

water 

Methanol 

Toluene, Aniline, Benzyl alcohol, Benzd+ailine 

Toluene, Aniline, N-Methylaniline, Benzaldehyde, Benrdtniline 

OD 
01 
03 
0 5  
08 
I.¶ 

Table 3 
Pseoddimt order rate constants 

Reaction in water at 386OC 

kl &timated 

P- 
C i l  [min4] 

0.0 
1280 

3350 
3660 
3880 

2720 

.193 
8276 
.0272 
a301 
. O S 5  
.OW 

0.0 
526.1 
1294.9 
1819.8 
2413.9 
33913 

22.1 

7.86 
C32 
1.98 
0.613 

158 

holding 
time 
(4 
5 - 5 0  
5 -  60 
5 -  50 
5 - 6 0  

8.98 
3.95 
4.12 
2.85 
1.95 

3.31 
2.82 
2.06 
1.59 
1.44 
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FIGURE I 
S u m m a r y  of B P A  yield for  all s o l v e n t s  

FIGURE 2 
BPA convcr t ion  a n d  p r o d u c t  selectivity 
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F I G U R E  3 
BPA conversion and product selectivity 

m a n  )n m.thQIo1. I - ea rmn 

0 0 2  0.1 0.6 0.8 I 1 . l  1.6 1.5 la 

Pigurc 4 
Proposed reaction pathways 

Pigure 4 a t  Neat  pyrolysis 

Pigure 4b1 Reaction i n  supercrit ical  solvent 
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