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INTRODUCTION

Fluorescence microscopy has been a useful analytical tool for characterizing
organic material in various coals and rocks (1=9). Teichmuller and Wolf (3,7)
discovered new fluorescing coal macerals, which also were found by Spackman (6) in
U.S. coals. Ottenjahn et al. (9) related the fluorescence properties of macerals to
technological properties of coal. Van Gijzel (8) has organized spectral
fluorescence properties for comparison. Since 1983, we have extended fluorescence
microphotometry from the spectral to the time domain by using a pulsed laser for
fluorescence excitation. Fluorescence decay times are measured as the new
characterizing parameters for the dispersed organic material. Simultaneously,
individual spectra of the various fluorescing components in the material are
obtained. This paper describes the new time-resolved fluorescence microscopy and
its application to coal and shale characterization.

SYSTEM DESCRIPTION

The laser fluorescence microscopy system is represented schematically in
Figure 1, Further specifications are given in Table 1. A pulsed laser and three
sources of continuous wave (c.w.) illumination are interfaced with a Leitz MPV3
microscope. The tungsten lamp is used for spectral calibration and surveying the
sample under white light., The mercury and xenon arc lamps are used for fluorescence
excltation and are coupled to the excitation monochromator. The EG&G nitrogen
pumped dye laser with a BDBP dye provides intense near-ultraviolet light pulses.
The laser is coupled to the microscope via a liquid light guide. The modular
construction of the microscope allows various optical components to be readily
interchanged. The emitted fluorescence is detected by a fast two-stage multichannel
plate (MCP) photomultiplier tube (Hamamatsu R1564U~01) with an enhanced red
response, The output of the MCP is directed either to a picoammeter when acquiring
conventional c.Ww. spectra or a Tektronics 7912AD fast waveform digitizer when
acquiring time-resolved spectra. The digitizer sums a number of MCP output pulses
and passes the average . to the 4052A Tektronics desk top computer, The extensive
software, developed in~house, constitutes a large portion of the development time,



TABLE I ~ Instrument Paraumeters and Fluorescence Signals

Size of coal maceral 10-50 um
Diameter of analyzed area 5 um
Tuning range of emission monochromator 220-800 nm
Range used 380-800 nm
Monochromator bLandwidth ?-7 nm
Continuous Fluorescence Excitation
Tuning range of excitation monochromator 220-800 nm
Typical excitation wavelength 365 nm
Monochromator bandwidth 1=7 an
Fluorescence Excitation by Pulsed Lascr :
Dye laser pulse duration (FWHM) Q.7 ns
Pulse energy (BDBP dye, 373nm, 10Hz) 10 wJ
Peak power 10 kW
Laser bandwidth (FWIM) 0.04 nm
Dye laser tuning range 360~800 nm
Excitation wavelength used 373 nm
Pulse repetition rate 1-100 ?z
Number of photons emitted per pulse (BDDP dye) 2x10)3
Photons onto sample x‘lO13
Photons onto measured region of sample (A5 um) 10119012
Typical fluorescence yield 0.001
Photons reachlng MCP photomultiplier alter passing

emlssion monochromator 10"
Typical number of photoelectrons per pulse 102—103
Instrument function rlsetime (laser pulse + photomultiplier +

digltizer preamplifier) 0.7 ns
FWHM of instrument function 1.1 ns
Single pulse digitizatlon rate 10~-100 GHz
Number of pulses signal averaged, typical 6U

METHOD

Time-resolved fluorescence emission spectra are obtalned In 10 nm steps by
scanning the ewmission monochromator of the MPV3 from 400 to 700 nm and acqulrlng the
fluorescence decay at each wavelength. This takes about 10 seconds at each
wavelength or 5 minutes total, 'fhe data reduction yields the multiple decay times,
component spectra, and relative intenslties and takes about 4 minutes at ‘one
wavelength or 1-2 hours total. Conventlonal spectra are obtainmed with c.w.
illumination and continuously scanning the emission monochromator.. Thls takes about
60 seconds, including correction for optical system response and smoothing. Very
simllar spectra, as expected, are obtained by integrating the time-resolved results

For routine data collection, a tungsten lamp is used to determine the spectral
response of the systewm. The lamp is cross calibrated with a standard lamp of a
known spectral output. This 1is done by measuring the raw spectrum, which includes
the system response of both the tungsten and standard lamps. The ratio of the raw
tungsten spectrum T.(A ) Lo the raw standard lamp spectrum E. (A ) is independent of
the system rGSponse and, when multiplied with the known standard lamp speotrum
E(A), results in the true tungsten spectrum T(A)
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The determination of the relative spectral response S(i) of a chosen optical
configuration (objective, dichroic filter, apertures) is done routinely by measuring
the raw tungsten spectrum Tr(x) and dividing by the true tungsten spectrum T (A):

L]

)

SO =T 2)

The corrected fluorescence emission spectrum R(A) from a sample 1s then determined
by taking the ratio

R_(})
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vhere R,(A) 1s the raw fluorescence spectrum. The above calibration procedures are
bullt into the software. In this way, normalized fluorescence spectra are obtained
independently of the particular optical companents chosen.

The acquisition and reduction of the pulsed fluorescence data require much
care. The individual anode pulses from the MCP PMT contain the fluorescence decay
F(t) and the temporal instrument response I(t). The measured signal M(t)is glven by
the convolution integral

L
M(e) = [ I(r) F(e-t)de 4)

The task 1is to obtain the fluorescence decay function F(t) and, from this, the
various decay times and percentage contributions from the individual fluorescing
components. This 1s done with an iterative reconvolution technique and least
squares fitting (see below), First, the ilnstrument function has to be determined.
Ir F(t-1) in the above integral is a delta-functlon 8 (t-1), then the measured
signal M(t) is I(t). Experimentally, a mirror is used in place of the sample, which
corresponds to replacing F(t-t) with &(t-t). Thus the instrument response is
obtalned and contains the contributions from the laser pulse, photomultiplier
response and preamplifier bandwidth (1GHz) of the waveforu digitizer.

Various deconvolution techniques have been examined by other investligators
(15,16,17). We have looked into three such techniques. The software developed
allowed us to mathematically model the fluorescence experiments by convoluting a
synthesized instrument response, including random Gaussian noise, with an assumed
multi-exponential fluorescence decay. The syntheslzed signal M(t) was then
deconvoluted using the different techniques to see how the calculated parameters
(decay times and pre-exponential coefflcients) compared with the known parameters
set at the beginning. We found that the Fourier transform method requires intensive
operator lnteraction and its ability to discern a sum of two or more exponentials
was guestionable. The method of moments could resolve single and double exponential
fluorescence decays. However, extension to three exponential waveforms has
proved to be difficult. The technique we found to give the best results 1s the
lterative reconvolution method, which was also found to be most satisfactory by
O'Conner et al. (15). We are able to successfully deconvolute data containing up to
three different fluorescence decays.

The iterative reconvolution method assumes that the fluorescence decay F(t)
from the sample 18 a sum of exponential terms corresponding to emission from n
individual fluorophores:

n
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Combining this with Equation 4 gives the flttlng function

n t
M= J A, [ 1) exp [-(t=1)/7] dt 6)
i=l -

where Ay and T; are the parameters to be adjusted untll a best fit to the measured
signal M(t) is found.

This best fit 1s obtained when the error sum x2 is minimized, where

N
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and N is the total number of channels (128 or 512) used.

The welght o 12 1s the square of the uncertainty in the measurement of the ith
channel and is given by
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where 002 is the baseline nolse (0.01mV2), CM(ti) 1s the counting error (1mV2), gy
1s the tlme axis jitter caused by small fluctuations Iin the trigger pulse
(o vi0ps) and A4t (~0.25 channels) is the fractional channel shift in our time
axls lineup routine. Typical values for the last two terms in Equation 8 are 2mV
and 0.25mvV“, respectively.

Minimizing the x 2 error sum Is an iterative process, which inyolves
incrementing the parameters A, and t; and thus successively reducing x“. The
method employed (20) is a combination of a gradient search along the X2
hypersurface and linearlzation of the fitting function. When far from the surface
minimum, the gradient plays the dominant role in determining the increment changes ,
As the search closes in on the minimum, the linearization of the ‘fitting ‘function do-
minates. The parameter increments are given by

2n -1
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where Bj - (Aiv T,), and Bk and u,jk are given by the relatlons:
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Mg(tl) is the best fit from the preceding iterations, A is a weighting factor and
6, 1s the Kronecker delta. The weighting factor determines the relative
contribution to the increments from the gradient search on the hypersurface to
the linearization of the fitting function.
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APPLICATION TO COAL MACERAL ANALYSIS

An example for time-resolved fluorescence analysis is given in Figure 2 for a
sporinite coal maceral (SIU sample 1444). The top part shows a signal-averaged
fluorescence pulse (solid line) and the best 2-exponential fit (dashed 1line). The
emission monochromator was set at 500 nm., The fit yields the pre-exponential
coefficients A; and decay times Ti. The component percentages are given by

Ai T

BT TEx
L 11
1

(here i=1,2) 12)

2 The accuracy of the fit can be assessed from the residuals and the reduced
Xv (20), where X\% <1 indicates a good fit, Ideally, the resliduals should be
random. They are not because of a finte number of channels, interpola%tion between
channels, small time axis Jitter, and small pulse shape variations. A 2-component
decay fits the present data well, and the assumption of a 3-component decay would
show redundance in the third component. The quantity T . 1is the mean decay time as
defined by Ta = LPyg Ti/‘lOO and has proved useful for comparisons.

The bottom of Figure 2 shows a complete time-resolved spectral analyslis,
where the parameters A;, T;, and Pj are plotted versus emitted wavelength. The
coefficients Ai()\) are the individual component spectra. The indivlidual decay times
T; often remain nearly constant over the spectral range, as would be expected for

pure substances,

In order to determine the usefulness of time-domain fluorescence analysis as an
extension of conventional fluorescence analysis of organic materials, two sets of
samples were studled. One set was a series of kerogen-rich shale samples at
different levels of maturation from the New Albany Formation from the Illinois
Basin., In these samples Type I kerogen is abundant as alginite Tasmanites, and all
measurements were taken on this material. While the maturation trends of this
material in the Illinois Basin have been studied using vitrinite reflectance and
qualitative and quantitative fluorescence techniques (21,22,23), nothing previously
was known of the time-resolved fluorescence properties of these (or any) samples.
The other set was a series of samples from the lower Kittanning seam from
Pennsylvania and Ohio, which range in rank from high~volatile bituminous C to
medium-volatile bituminous,

One obvious advantage of the time-resolved analysis is illustrated in
Figure 3. The continuous-type fluorescence spectrum for a sample of the alginite
Tasmanites (upper diagram) can be time-resolved into two separate spectra (lower
diagram). The time-resolved analysls indicates that the continuous spectrum derived
from standard fluorescence contains in this case the combined contributions from (at
least) two fluorescing components with their own distinct spectra.

The fluorescence decay times of organic materials in both sets of samples
showed some surprising similarities, First, in all material studled, Tasmanites in
the New Albany shale, and fluorinite, sporinite, resinite, and cutinite macerals in
the Lower Kittanning seam, the time~resolved data showed good agreement with a two-
component decay model. Thus, the fluorescence of all of these materials appears to
be composed of two fluorescing components with lifetimes in the subnanosecond and
nanosecond ranges. In addition, the fast lifetime component (about 200 ps) seems to
be constant in all samples and maceral types. Although these results are
preliminary, a working hypothesis is that the two fluorescence lifetimes are
from two different fluorophores, one of which is common to all the materlals studied
(alginite, fluoronite, resinite, cutinite and sporinite).
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When the fluorescence decay times were plotted against rank (as defined by
vitrinite reflectance), the alginites and sporinites showed the clearest trends as
seen in Figures 4 and 5. The decay times do not seem to change much with increase
in thermal maturation or rank, However, the percentage contribution of each
component to the overall spectra do show a systematic change as illustrated in the
same figures. In the case of the alginite, the fast component increases with rank,
the slow component decreases, and the trends are reversed for the sporinites,
Although these data are preliminary, the hypothesis (being investigated further) is,
that in the maturation process one fluorophore is transforming into another.

To further test our experimental procedures, model compounds (e.g. POPOP,
anthracene) in solution and their mixtures were studied. We found that two
compounds can be distinguished in a mixture and the correct fluorescence decay times
and spectra are obtained.

CONCLUSIONS

1. Time-domain analysis is a powerful extension of continuous fluorescence
analysis.,

2. Characteristic lifetimes, percentages, and intensitiescan be determined.

3. The spectra of a variety of organic materlals can be resoclved into two distinct
components, one in the subnanosecond range and one in the nanosecond range.

g, Within the resolution limits of the system (100 ps), it appears that the ‘fast
lifetime component is the same in a variety of organic materials,

5. With the new technique, mixtures of short and long lifetime model compounds can
be resolved into their original component spectra and fluorescence decay times.

6. In alginites and sporinites, fluorescence lifetimes appear to be nearly
constant with changes in rank.

T. In alginites and sporinites, the percentage contribution from each component
changes with rank.

Time-resolved laser spectroscopy improves the specificity of conventional
fluorescence microphotometry of coals and oil shales. We have been using the new
vechnique in studies of dispersed organic matter in shales and expect to understand
better the maturation of the organic material in source rocks (24).
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KITTANNING SPORINITE —— LIFETIME :COMPONENTS

Figure 5a.
sporinite coal macerals from the lower Kittaning seam
(Pennsylvania and Ohio) as a function of rank.

(See also caption to Figure 4a.)
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Figure 5b.
from the two major fluorescing components in sporinite
as a function of vitrinite reflectance. (See also
caption to Figure 4b.)

0.5 0.8 0.7 0.8 0.8 1 1.4
REFLECTANCE <%2

Percentage contributions to the fluorescence

16

A



