INTRODUCTION

One of the main functions of government is to invest tax dollars in programs, projects, and properties that will result in greater social benefit than would have resulted from leaving those tax dollars in the private sector or using them to pay off the public debt. One traditional area for investment by government is R&D. According to Battelle, U.S. R&D expenditures reached $164.5 billion in 1994, and federal support represented $69.8 billion (42.4%) of the total (1). If invested wisely, these tax dollars can lead to greater social benefit than would be obtained by leaving them in the private sector or using the money to pay off the federal debt. However, if not invested wisely, this could result in less than optimal social benefit or, even worse, in less social benefit than could be obtained from the other two options. The purpose of this paper is to describe an approach to analyzing and selecting investment opportunities for federal money in public R&D programs and valuating expected private sector participation in the programs and to apply this approach to a specific biomass-to-ethanol R&D opportunity.

BASICS OF INVESTMENT ANALYSIS

For all investment situations there are five basic variables: (1) costs; (2) profits or benefits; (3) time; (4) the discount rate; and (5) risk. In the analysis of investment alternatives for a given situation, the alternatives under consideration may have differences with respect to costs and profits or benefits, project lives, and uncertainties. If the effects of these factors are not quantified systematically, correctly assessing which alternatives have the best potential is very difficult.

Many methods are available to decision makers to systematically evaluate investment options. These methods, described in detail in a variety of books and articles (2), include present, annual, and future value; rate of return; and break-even analysis. The application of each method depends on whether the analysis is for a single opportunity, two mutually exclusive opportunities, or several non-mutually exclusive opportunities. For the single opportunity situation, the decision maker is simply trying to decide if the single investment option meets a minimum expected financial return. For the mutually exclusive situation, the decision maker has two investment options and is trying to decide whether the options meet the minimum expected financial return, and, if both do, which is the best choice. For the non-mutually exclusive situation, the decision maker has several investment options and is trying to decide which of these meets the minimum expected financial return, and, of those that do, which combination of these will provide the maximum return on total investment dollars available.

One must be careful in applying rate of return analysis to mutually exclusive and non-mutually exclusive situations. If one simply calculates the rate of return for each alternative and then chooses the alternative or alternatives with the largest rates of return, this can, and often does, lead to the wrong choice. The correct application of rate of return analysis to either situation is known as incremental rate of return and can be very tedious and time consuming, and one must take extra steps to account for differences in project lives. Net present value (NPV) is the tool of choice for evaluating mutually exclusive or non-mutually exclusive investment options because it is much less time consuming, is straightforward, does not require additional steps or considerations for projects with different lives, allows direct comparison between projects of widely differing objectives and scopes, and allows a rational approach to valuating private sector participation in public programs.

NPV APPROACH TO NON-MUTUALLY EXCLUSIVE INVESTMENTS

A non-mutually exclusive investment situation is one where more than one investment option can be selected, depending on available capital or budget restrictions. The objective is to select those projects that maximize the cumulative profitability or benefit from the available investment dollars. To maximize the cumulative profitability or benefit, the decision maker selects the combination of projects that maximize the cumulative net present value.

To apply NPV to non-mutually exclusive alternatives, the NPV for each alternative is calculated by determining the present value of the profit/benefit stream calculated at the minimum rate of return (hurdle rate) and subtracting the present value of investment dollars and other costs, also calculated at the minimum rate of return.

\[
\text{NPV} = \sum_{t=0}^{T} \frac{R_t - C_t}{(1+i)^t} - \sum_{t=0}^{T} \frac{I_t + O_t}{(1+i)^t}
\]

where:
- \(R_t\) is the net revenue in period \(t\)
- \(C_t\) is the cost in period \(t\)
- \(I_t\) is the investment in period \(t\)
- \(O_t\) is other costs in period \(t\)
- \(i\) is the discount rate
- \(T\) is the project life

The NPV is positive if the project is acceptable, and the higher the NPV, the better the project.

\[
\text{Net Present Value (NPV)} = \frac{\text{Present Value Revenues}}{\text{Present Value Costs}} - 1
\]

\(i^{*}\) = minimum rate of return
If the project NPV is zero, there is enough revenue or benefit to cover the costs at a rate of return that is equal to the minimum rate of return required by the investor. Projects with an NPV less than zero are dropped from further consideration because their rate of return is less than the minimum required return. If the NPV is greater than zero, the NPV represents how many present value dollars will be returned to the investor above and beyond those that will be returned at the minimum rate of return. Once the NPV for each project is calculated, the decision maker looks at all possible combinations of projects to determine which combination (whose total investment does not exceed the amount of money available) has the largest cumulative NPV. This is the best possible investment portfolio. Often, selecting the best portfolio does not involve selecting projects with the largest individual project net present value and does not necessarily involve selecting projects with the highest rates of return.

If one is faced with the daunting task of selecting an investment portfolio when there are dozens of investment options, an alternate method may be used to simplify the process. Growth rate of return or ratio analysis may be used to rank non-mutually exclusive alternatives rather than cumulative NPV analysis (2). Large companies and government programs are often faced with the task of evaluating literally hundreds of potential projects. Many combinations of projects must be analyzed to determine the optimum group of projects that will maximize the cumulative NPV for a given budget. The use of growth rate of return or ratio analysis only requires the calculation of the respective values for each project and then ranking the projects in the order of decreasing values. The illustration of these concepts will not be demonstrated here, but the reader should be aware of these methods to evaluate a complex investment portfolio.

SPECIAL CONSIDERATIONS FOR NON-MUTUALLY EXCLUSIVE GOVERNMENT INVESTMENTS

Converting Intangible Benefits and Costs into Dollar Values

A basic tenant of this paper is that to make rational investments of public dollars one must have some approximate, quantitative idea of the value of critical costs and benefits. Moreover, as a practical matter, it is essential that the measure of value be the same for both costs and benefits so that direct comparisons between costs and benefits can be made. The most universal measure of value is the dollar. In the private sector this is the measure of cost and benefit. In the public sector, particularly with respect to R&D programs, it's the established measure of cost. However, on the benefit side, there is no established measure of value. The authors contend that the dollar should be the measure of benefit so that direct comparisons can be made with costs and so that the established and the well recognized investments analysis methodology described above can be employed in the public sector.

In many cases converting benefits and costs to dollars is fairly straightforward. For example, a key benefit that the U.S. Department of Energy (DOE) is interested in is reducing imported petroleum. The dollar value of the yearly benefit can easily be calculated from the present and projected price of petroleum (3). As another example, it is possible to estimate the net annual increase or decrease in jobs that results from introducing new technology. In addition, it is fairly straightforward to place a dollar value on these jobs (4). Other possible costs and benefits are environmental and social, which are more difficult to quantify. Nevertheless, the U.S. Environmental Protection Agency has studied these issues carefully and has given dollar estimates of health costs associated with various types and levels of pollution.

Minimal Rate of Return for Public Projects

Establishing a minimal rate of return for public projects requires some special considerations, which have been reviewed extensively by Terry Heaps (5) for Canadian public projects. He concluded that the correct social discount rate for Canada was 3-7%. In another study performed by Wilson Hill Associates (3) a discount rate of 7% was used for Projects evaluated for the Office of Transportation Programs in DOE.

SELECTING PUBLIC R&D PROGRAMS AND VALUATING EXPECTED PARTICIPATION BY THE IMPLEMENTING INDUSTRY

Commonly, a government R&D program is initiated without the private sector, but the private sector is expected to "come on board" at some point to carry the ball forward into the commercial arena. For these situations, the government and the private sector make investments in R&D and technology commercialization in order to obtain what each desires—social benefit in the case of government, and profit in the case of the private companies. Analysis of the value of these programs demands answers to three questions: (1) What portion of the R&D cost can the private sector incur and still obtain its minimum return from implementing the technology?, (2) When this private sector cost allowance is subtracted from the total estimated cost to carry out R&D so as to obtain an estimate of the R&D cost that must be borne by government, is the estimated government R&D cost justified given the expected social benefit from implementing the technology?, and (3) If the answer to questions 2 is positive, does the program represent one of government's best opportunities for its limited investment dollars?
The NPV approach to investments provides the answer to all three questions. For example, to answer the first question one calculates the **industry NPV**. To do this, one estimates over time the capital and operating costs the industry at large will incur to implement a new technology and, using the average minimum interest rate for the industry, calculates the present value of these costs to industry at the initial time of commercialization. One also estimates over time the present value at the time of commercialization of the expected increased revenues or savings the industry should experience from implementing the technology. Subtracting the present value costs from the present value revenues gives the industry NPV at the time when commercialization is expected to begin. If the NPV is negative, the industry cannot afford to contribute to the R&D effort and cannot afford the capital and/or operating costs of commercialization. As a result, it will not “come on board” and the government should drop consideration of the program. If the industry NPV is zero, industry cannot afford to contribute to the R&D costs, but can afford the capital and operating costs to implement the technology. In this situation the government will have to incur all the R&D costs in order for industry to adopt the technology. If the industry NPV is positive, the government can expect the industry to participate in the R&D costs at a level equivalent to the NPV. This participation may be provided in the form of cost sharing or through licensing arrangements.

To answer the second question, one calculates the **government NPV**. To do this, the expected social benefits are estimated over time and dollar values are assigned. Then the present value of these benefits is calculated at the time the program was initiated using the social discount factor. Next, the entire R&D costs over time are estimated and discounted to the time the program began using the social discount factor. Next, the expected R&D contribution from industry, calculated above as industry NPV is discounted to the time of initiating the program using the industry discount factor. This industry R&D contribution, discounted to when the program began, is then subtracted from the entire R&D costs, also discounted to when the program began, to obtain the governments expected R&D costs discounted to the time the program began. These discounted government R&D costs are then subtracted from the discounted benefits to obtain the government NPV for the program at the time the program was initiated. If the government NPV is less than zero, the program should not be considered for investment of tax dollars. If the government NPV is zero or greater, it should be thrown in the pot of possible government investments.

To answer the third question, government should list all investment options with a NPV greater than zero and select that combination of projects that will maximize the government's cumulative net present value.

VALUATING EXPECTED PARTICIPATION BY INDIVIDUAL COMPANIES

If, from the above analysis, the industry NPV is positive, individual companies that are members of the industry can be expected to cost share in the R&D phase of a program or purchase licensing arrangements. However, the level of cost sharing or license fees will depend on each company’s circumstances. The expected level of cost sharing or the licensing fee for a given company can be calculated using company NPV derived from projected revenues and costs a company will experience in implementing the technology in commercial use. If the company NPV is negative, the particular company cannot afford to implement the technology even if the technology is provided free. Such a company is not a viable partner to the government program. If the company NPV is zero, the company may be a partner only in the sense that it will implement the government-developed technology if it is free to the company. If the company NPV is positive, the company can afford to cost share the R&D effort or purchase a licensing arrangement at a level equal to the company NPV. Such companies are potentially the most valuable partners to the program.

APPLICATION TO BIOMASS-TO-ETHANOL R&D OPPORTUNITIES

The authors will supply a detailed example of the use of NPV analysis to a biomass-to-ethanol opportunity.

REFERENCES