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Understanding a variety of natural phenomena and industrial 
processes relies on the knowledge of chemical reaction 
mechanisms and kinetics.  Endeavor in such cases begins with 
identification of underlying reaction pathways and fundamental 
mechanisms.  When sufficient data accumulate, the interest often 
shifts to practical applications, motivating the development of 
mechanistic models. 

The “textbook” approach to the development of mechanistic 
reaction models consists in conjecturing the reaction mechanism, 
expressing it in a suitable mathematical form, and comparing the 
predictions of the constructed model to available experimental 
observations.  Typically, such tests result in a mixed outcome, 
some showing a reasonably close agreement and some not.  The 
apparent inconsistency between the model and experiment obtained 
in the latter case is argued then to imply either that the model is 
inadequate or that the experiment (or rather its interpretation) is 
incorrect. 

In some areas, such as heterogeneous catalysis and 
biochemical systems, the fundamental reaction mechanisms are 
largely unknown and establishing them form the challenge of the 
current research.  Yet, in other fields, such as atmospheric 
chemistry and combustion of small hydrocarbons like methane, 
there are broad consensus over the reaction pathways underlying 
the mechanisms and the inadequacy of the kinetic models 
essentially rests in their parameter values.  In the following we 
assume the latter situation. 

If the kinetic parameters of such a “known” mechanism were 
known exactly, then a direct comparison of model prediction with a 
given experiment, within its uncertainties, would decisively 
indicate whether that experiment is consistent or inconsistent with 
the model.  In reality, however, the model parameters themselves 
have uncertainties, and they have to be included in the analysis. 

In principle, the parameter identification of chemical kinetic 
models can be posed as classical statistical inference: given a 
mathematical model and a set of experimental observations for the 
model responses, determine the best-fit parameter values, usually 
those that produce the smallest deviations of the model predictions 
from the measurements.  The validity of the model and the 
identification of outliers is then determined using analysis of 
variance. The difficulty of applying standard statistical methods 
lies in the fact that chemical kinetics models are stated in the form 
of differential equations that do not possess a closed-form solution.  
Further complications arise from the highly “ill-structured” 
character of the objective function, with long and narrow valleys, 
resulting in ill-conditioned optimization and lack of unique 
solution. 

The optimization problem for general, non-linear dynamic 
models has been addressed with a series of numerical methods: 
“direct” gradient search, gradient search based on sensitivities, 
solution mapping, genetic algorithms, and Monte Carlo techniques.  
In some cases, it was coupled with statistical inference and 

estimation of confidence regions.  Recent developments also 
include formulation of the problem in the form of error 
propagation: given a set of uncertainty ranges of model parameters, 
estimate the intervals of variations for model predictions. 

All of the above methods essentially view the problem as a 
two-step process: estimation of model parameters from fitting a 
selected set of experimental data followed by exercise of the 
obtained model, either as validation against an additional set of 
experiments or making predictions outside the experimentally 
accusable conditions. 

Recently, we have pursued a different approach, which we 
call data collaboration.1  In this approach we focus not on 
parametrization of the parameter uncertainty region, which the 
above methods engage in and rely upon, but rather on transferring 
the uncertainties of the “raw” (experimental) data into the model 
directly.2  Doing so allows harvesting substantially more of the 
information content of the data, and to obtain more realistic bounds 
of model predictions.  Our approach is anchored in the concept of a 
dataset that unites all the pertinent experimental data and the 
mechanistic knowledge for a given system, and the numerical 
analysis is based on combination of Solution Mapping and new 
developments of the Robust Control Theory.  This numerical 
methodology avoids unnecessary over-constraining of model 
parameters, which plagues many other techniques due to inherent 
correlations among parameters, while exploring more closely the 
true feasible set of the parameter space in a computationally 
efficient manner. 

The present work expands further on these ideas.  New 
mathematical developments allow us to address the mutual 
consistency of experimental observations, within the framework of 
a dataset. 
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