
PREDICTION OF DENSITY AND CETANE NUMBER 
OF DIESEL FUEL FROM GC-FIMS AND PIONA 
HYDROCARBON COMPOSITION BY NEURAL 

NETWORK 
  

Hong Yang, Yevgenia Briker, Renata Szynkarczuk and Zbigniew Ring 
  

The National Centre for Upgrading Technology, Devon, AB, 
Canada, T9G 1A8 

 
Introduction 

Modeling and optimization of bitumen upgrading processes 
require reliable correlations to predict the key properties of the 
product stream based on its computer-generated composition. In the 
approach taken by the National Centre for Upgrading Technology 
(NCUT), these models are designed so that this computer-generated 
composition is equivalent to the various available chromatographic 
tests. This effectively decouples the development of the main parts of 
any process model: the reactor and product quality models. As part of 
its process modeling program, NCUT has assembled a large database 
of diesel fuels. The chemical compositions of the diesel fuels were 
characterized by several chromatographic methods. A neural network 
approach was then taken to correlate fuel properties such as density, 
aniline point, cloud point, viscosity, refractive index, molecular 
weight and cetane number with chemical compositions. This work 
presents the preliminary results on the correlation of density and 
cetane number with the hydrocarbon compositions of diesel fuels 
given by the sum of GC-FIMS (Gas Chromatograph-Field Ionization 
Mass Spectrometry) and PIONA results (normal paraffins, 
isoparaffins, olefins, naphthenes and aromatics). 
 
Method  

One hundred fourteen diesel samples were prepared by 
blending 15 original diesel components obtained from Canadian 
refineries and derived from both conventional crude oil and oil-sands 
bitumen. Cetane number and density (g/cm3, 15.6oC) of the diesel 
fuels were measured using the ASTM D613 and ASTM D4052 
methods, respectively. Hydrocarbon type compositions of the fuels 
were determined by GC-FIMS and PIONA. In each sample, the 
material boiling in the 200 – 343°C range was analyzed by GC-FIMS 
while PIONA was used to analyze the material boiling at 
temperatures lower than 177°C. The sum of GC-FIMS and PIONA 
results, weighted with the corresponding mass fractions, gave the 
total hydrocarbon composition of the blend. For the GC-FIMS 
determinations, a 30 m x 250µm x 0.25µm HP1-MS non-bonded 
column was used. The injection (0.2µL; 19:1 split) was made with 
the oven at 45oC.  The AC PIONA analyzer based on HP GC 5890 
instrument was used to perform the analysis. It was operated under 
the ‘mode 20’conditions (normal paraffins, isoparaffins, naphthenes, 
and aromatics). Further details are reported elsewhere1. 

 
A three-layer Ward backpropagation network with three 

hidden slabs (WSGN – NeuroShell® software, Ward System Group 
Inc. MD, USA) was used in neural network correlations2. Including 
the original diesel fuels and the diesel blends, a total of 129 samples 
were used to construct the neural network correlations. The 129 
samples were divided into three data sets: training set, test set and 
production set. Two steps were required to create the three-layer 
backpropagation neural network model: a training step and a 
validation step. In the training step, the neural network was supplied 
with the training data set, including the input and corresponding 
output values. The network learned the trends contained in the data 

set and correlated the inputs and outputs by finding the optimum set 
of weights that minimized the differences between the predicted 
outputs and the actual outputs. The test set was used with calibration 
during the training process to prevent over-training of networks, such 
that they would generalize well on new data. During the validation 
step, the neural network was provided with the production data set, 
not seen during the training step, to compute an average error for the 
test set of this model. The training terminated when 20,000 epochs 
had passed since reaching of the minimum average error for the test 
data set.  

Twelve hydrocarbon types were used as neutral network 
inputs, and density or centane number was the network output. Table 
1 lists the maximum and minimum values of the inputs and outputs 
for all the diesel samples used in this study. As shown in the table, 
the diesel samples used in this work cover a wide range of chemical 
composition and physical properties. 
 
Table 1.  Maximum and minimum values of the neural network 

inputs and outputs 
 
 

Max Min
Inputs  (mass%)
Isoparaffins 33.09 0.70
n-Paraffins 20.95 0.37
Monocycloparaffins 29.42 1.60
Dicycloparaffins 28.38 0.27
Polycycloparaffins 31.80 1.29
Alkylbenzenes 18.31 5.81
Benzocycloalkanes 31.36 3.08
Benzodicycloalkanes 10.37 0.09
Diaromatics 62.51 0.74
Triaromatics 3.92 0.00
Tetraaromatics 0.63 0.00
Aromatic sulfurs 5.07 0.01
Outputs
Density (g/ml @15.6°C) 0.9569 0.7985
Centane (CN) 58.4 18.7

 
 

 
Results and Discussion 

The consistency of the blending process was checked by 
comparing the density of the diesel blends measured by ASTM 
D4052 with the calculated weight averaged density derived from 
original diesel fuels by the following equation: 

d = ∑
n

diWi
1

where n is the number of original diesel blending components that 
contributed to the blend, di is the density of the ith blending 
component, Wi is the weight fraction of the ith component in the 
blend. Figure 1 plots the calculated densities of the blends versus 
those measured by ASTM D4052. Good agreement between the two 
sets of data is demonstrated there.   
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Figure 1.   
Comparison of weighted average density with measured density 
 
 
Density correlation  

The twelve hydrocarbon types listed in Table 1 were used 
as inputs, and density as the output for the three-layer Ward 
backpropagation network. Seventy-five diesel blends were chosen as 
the neural network training data set. To cover the whole range of the 
diesel fuels in this study, the training data set included the 15 original 
diesel blending components that contained the maximum and 
minimum values of inputs and outputs. Twenty diesel blends were 
included in the test set and 34 diesel blends were in the production 
set.  

The densities of all the diesel blends were calculated with 
the obtained neural network models. The results are plotted in Figure 
2 (open circle) showing parity between the calculated and measured 
densities. Unfortunately, the correlation coefficient obtained was 
only 0.8560.   

In order to improve the predictions, we carefully examined 
the boiling range (Simdist ASTM D2887) of the diesel blends, and 
found that 30 diesel blends contained substantial amount of material 
boiling higher than 343°C. Since the GC-FIMS method we employed 
could only give reliable hydrocarbon compositions in the range 
between 200 to 343°C, the hydrocarbon compositions of these 30 
heavier diesel blends were found erroneous. A new neural network 
model was completed after we removed the 30 blends from the data 
set. The new model was used to calculate the densities of the 
remaining 99 diesel blends. The results were compared with the 
previous ones in Figure 2 (close circle). A significant improvement 
was achieved. A correlation coefficient of 0.9875 was obtained in 
this case. 

 
Cetane number correlation  

Neural network correlations for predicting cetane numbers 
from the diesel fuels’ chemical compositions were established using 
both full diesel blends (129 sample data) and diesel blends without 
the 30 heavy samples (99 sample data). Figure 3 shows the neural 
network predicted versus measured cetane numbers in both cases. 
The results indicate that the removal of the 30 heavy diesel blends 
benefits the cetane number correlation. 

 
 
 

 
Figure 2.   
Comparison of calculated density with measured density with (○) and 
without (●) 30 heavy diesel blends 
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Figure 3.   
Comparison of calculated cetane number with measured cetane 
number with (○) and without (●) 30 heavy diesel blends 
 
NCUT had previously developed neural network correlations for 
densities and cetane numbers of diesel fuels from chemical 
compositions using the same three-layer Ward backpropagation 
network 3. A smaller database with 69 diesel blends was used in that 
case. LC/GC-MS (liquid chromatography (LC)/gas chromatography-
mass spectrometry) was used to determine the chemical compositions 
of diesel fuels. Good correlation results were obtained in our 
previous study. In the present work, the chemical composition was 
determined by the sum of PIONA and GC-FIMS. GC-FIMS has 
several advantages over GC-MS. In GC-FIMS the sample can be 
analyzed entirely without separating into saturate and aromatic 
fractions, which reduces the error caused by lost of lighter and heavy 
ends during the separation procedure. GC-FIMS can also distinguish 
n-paraffins from iso-paraffins, which increases the prediction 
accuracy of the correlations since n-paraffins and iso-paraffins have 
different effects on cetane number and density. The statistical results 
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of density and cetane number obtained in the present work and 
previous work are compared in Table 2. 
 

Table 2.  Comparison of the statistical results for density and 
cetane number predictions using neural network models 
devrived from GC-MS and GC-FIMS +PIONA results 

 

 
Two conclusions can be drawn from Table 2. First, the mean absolute 
error for cetane number prediction from both neural network models 
were below the reproducibility limits of the ASTM D613 engine test 
method, which was between 2.8 to 4.8 depending on the cetane 
number of diesel fuel. However, the mean error for the density 
prediction was not as good as the reproducibility of the ASTM 
D4052 test (0.0005). Second, the neural network correlations 
developed using more detailed hydrocarbon composition (sum of 
GC-FIMS and PIONA) as well as a larger database (the current 
work) resulted in substantial improvements of density and cetane 
number predictions over the neural network correlations developed 
using GC-MS and the smaller database. The mean absolute error for 
density decreased from 0.004 to 0.002 when the current model 
replaced the previous neural network model. The mean absolute error 
for cetane number reduced from 1.32 to 0.72 when the new model 
was used. These correlations could probably be further improved by 
introducing more inputs or slightly different inputs to the 
correlations. The former requires a greater experimental database but 
the latter could be done using the same database. 
 
Conclusions 

A neural network method was used to establish correlations for 
density and cetane number for a diesel fuel from its chemical 
composition determined by GC-FIMS and PIONA.  The results show 
that reliability of the hydrocarbon compositions is very important to 
create accurate neural network correlations. Significant improvement 
was obtained for both density and cetane number correlation after the 
removal from the database of 30 heavy diesel blends that could not 
be characterized correctly by the GC-FIMS method. The neural 
network correlation could predict the cetane number with mean 
absolute error well below the reproducibility limit of the ASTM 
engine test method. However, further effort is needed to develop a 
better correlation for density prediction. Our results also showed that 
significantly better neural network correlations were obtained using 
hydrocarbon compositions derived from GC-FIMS + PIONA and a 
large database. 
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GC-MS GC-FIMS GC-MS GC-FIMS
PIONA PIONA

R-square 0.96 0.99 0.91 0.97
Mean absolute error 0.004 0.002 1.32 0.72
Max absolute error 0.009 0.007 6.9 2.85
Percentage with 5% 100 100 81.2 94.9

Density Cetane number
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