The Potential of the CO$_2$ reforming of CH$_4$ as a method of CO$_2$ mitigation. A thermodynamic study.

Damien Treacy, Julian R.H. Ross

Centre for Environmental Research, University of Limerick, Ireland.

1. Introduction.

Carbon dioxide (CO$_2$) has been identified as the most significant greenhouse gas arising from anthropogenic activities. Presently, atmospheric levels of CO$_2$ are thought to be about 25% higher than in pre-industrial times [1]. It is of great importance to reduce anthropogenic CO$_2$ emissions in order to counteract global warming. In many countries (7 in the EU) a tax related to CO$_2$ emissions has been introduced in order to encourage better plant efficiency and/or create increased investment in CO$_2$ mitigation. One method of accomplishing a reduction in CO$_2$ emissions is fuel switching. As an example, if naphtha is used as a fuel, the following combustion reaction takes place:

$$C_{10}H_8 + 12O_2 \rightarrow 10CO_2 + 4H_2O \quad \Delta H^0_{298K} = -5134KJ (1)$$

and 0.085g of CO$_2$ is released per KJ of energy produced. If the naphtha is replaced with a low-carbon containing fuel such as natural gas the energy:CO$_2$ ratio becomes more favourable with 0.055g of CO$_2$ produced per KJ of energy released.

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O \quad \Delta H^0_{298K} = -800KJ (2)$$

In the long term one must consider more innovative options for anthropogenic CO$_2$ reduction. One such method, which is presently being extensively investigated, is the sequestration of CO$_2$ produced by concentrated sources (such as industry and power stations) and the subsequent disposal of the trapped CO$_2$ in reservoirs such as the deep sea or in aquifers [3,4]. Ocean disposal is seen as the method with the greatest long-term application possibilities. However there are a number of relevant concerns about this method of CO$_2$ disposal: how much of the sequestered CO$_2$ will be returned to the atmosphere and when will it be returned? According to Adams et al. [5] the atmosphere and the ocean eventually equilibrate on a timescale of about 1000 years regardless of where the CO$_2$ is originally discharged. Wong et al. [4] estimated that the disposal of CO$_2$ in the intermede waters of the North Pacific would buy only 20-50 years of CO$_2$ reduction. Another option which may aid in the reduction of CO$_2$ emissions is the fixation of CO$_2$ as a chemical. The advantage of CO$_2$ utilisation (fixation) over CO$_2$ disposal is that the production of chemicals with an economic value is possible. Aresta et al. [6,7] have done extensive research in this area. They have shown that the production of materials such as carbamic esters, urea and methylamines can be produced from CO$_2$ feedstocks.

Another reaction which consumes CO$_2$ is the dry reforming of natural gas (CH$_4$).

$$CO_2 + CH_4 \rightarrow 2CO + 2H_2 \quad (3)$$

This paper assesses whether dry reforming can be viably used as a method of CO$_2$ mitigation. We have calculated all-over energy balances for a number of all over process scenarios involving the production of synthesis gas followed by the production of some other product (methanol, sulphur-free diesel and carbon).

Much of the work carried out on dry reforming of CH$_4$ has been justified by the argument that the reaction offers a route for the conversion of large amounts of CO$_2$. The product of reaction (3), synthesis gas, is an equimolar mixture of CO and H$_2$. Synthesis gas can be used to produce higher value products, most notably sulphur free diesel (4), via Fischer-Tropsch synthesis, and methanol (5).

$$nCO + (2n + 1)H_2 \rightarrow C_nH_{2n+2} + nH_2O \quad (4)$$

$$CO + 2H_2 \rightarrow CH_3OH \quad (5)$$

Both of these reactions ((4) and (5)) require H$_2$ to be added to the reactant synthesis gas feed in order to establish the correct reactant ratio. This hydrogen would usually be supplied by the steam reforming of CH$_4$(6).

$$CH_4 + H_2O \rightarrow 3H_2 + CO \quad (6)$$

CO$_2$ and CH$_4$ are both relatively stable compounds with low potential energies. As a result the dry reforming reaction is highly endothermic and so energy has to be provided in order to drive it in the forward direction. Similarly, the steam reforming of CH$_4$ is also an endothermic reaction. The most likely energy source to drive these reactions will be the combustion of natural gas (2) and this process, in itself, produces CO$_2$.

In these calculations we assume CO$_2$ and steam reforming operate in parallel to form the necessary ratio of synthesis gas to produce; (i) methanol, (ii) sulphur free diesel, represented simply as C$_b$H$_{12}$, and (iii) carbon.

In the case of carbon production the process could occur directly via reaction (8);

$$CH_4 + CO_2 \rightarrow 2C + 2H_2O \quad (7)$$

or more likely by the production of synthesis gas (3) followed by the reduction of CO (9).

$$2CO + 2H_2 \rightarrow 2C + 2H_2O \quad (8)$$

The carbon all-over process does not require additional steam reforming, as the synthesis gas ratio required for reaction (8) is 1. In these calculations we assumed an all-over energy efficiency of 80%, i.e. 80% of the energy released from the exothemeric final reaction step (e.g methanol synthesis) can be recycled to drive the endothermic reforming steps. The remainder of the energy required can be attained from the combustion of natural gas (also at an 80% energy efficiency).

For simplicity, we have calculated the enthalpies for the processes involved at a single temperature of 773K. This temperature represents a compromise between the low and high temperature steps (the final reaction and the reforming steps respectively) likely to be involved in the all-over process. For example, methanol is produced by the Synetix (formerly ICI) process in the temperature range 473-573K [7], while reforming reactions are usually carried out in the temperature range 973-1223K [8].

(i) Methanol Synthesis.

In this study methanol is assumed to be produced in two steps. The first step involves the formation of synthesis gas via the combined steam and CO$_2$ reforming of CH$_4$ (reactions (3) and (6)). Following the reforming step, methanol is synthesised by reacting the resultant synthesis gas (CO and H$_2$). This all-over process can be summarised by the following reaction equation;

$$CH_4 + CO_2 + 2H_2O + 177KJ \rightarrow 4CH_3OH \quad \text{[i.e. } \Delta H^0_{773K} = 177KJ\text{]} (9)$$

When the heat efficiency of the system is assumed to be 80%, the heat required to drive the reaction increases to 221KJ. This means for 1 mole of CO$_2$ to be consumed by reaction (9), a heat input of 221KJ is required from an external source. This usually is obtained by combusting natural gas;

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O + 800KJ \quad \text{[i.e. } \Delta H^0_{773K} = 800KJ\text{]} (2)$$

This implies that 0.34 moles of CO$_2$ will be released so as to provide the required energy to drive the all-over methanol synthesis reaction (9).

Therefore the all-over amount of CO$_2$ consumed in methanol synthesis process is 0.66 moles per mole of CO$_2$ consumed by the initial reforming of CH$_4$.

(ii) Sulphur Free Diesel (Fischer-Tropsch Synthesis).

Again this reaction occurs in two steps; the first being the reforming of CH4 to produce synthesis gas while in the second step the resultant synthesis gas is reacted to produce higher hydrocarbons (CnH2n).

This all over energy process can be represented by reaction (10):

\[
3\text{CH}_4 + \text{CO}_2 + \text{H}_2\text{O} \rightarrow 0.667\text{C}_6\text{H}_{12} + 3\text{H}_2 \text{O} \quad \text{[i.e. } \Delta H^\circ_{298K} = 23\text{KJ}] \quad (10)
\]

At an energy efficiency of 80%, the amount of energy required to drive reaction (10) is 28.8KJ. This energy is supplied by combusting CH4 at the expense of 0.05 moles of CO2 per mole of CO2 consumed in the Fischer-Tropsch process. Therefore 0.95 moles of CO2 are mitigated in this process per mole of CO2 consumed in the initial reforming step.

(iii) Carbon production

This all-over reaction scheme differs from the previous two, as steam reforming is not necessary to provide additional H2.

\[
\text{CH}_4 + \text{CO}_2 \rightarrow 2\text{C} + 2\text{H}_2\text{O} + 12.5\text{KJ} \quad \text{[i.e. } \Delta H^\circ_{298K} = -12\text{KJ}] \quad (8)
\]

\[
\Delta H^\circ < 0 \text{ at the reaction temperature examined (indeed } \Delta H^\circ < 0 \text{ for all temperatures) and as a result there is no need for additional CH}_4 \text{ combustion. For every mole of CO}_2 \text{ consumed in reaction (11) one mole of CO}_2 \text{ is mitigated.}
\]

3. Discussion

Although there were a number of gross approximations made in calculating the all-over energy results presented in this paper, the results are very informative and may inevitably lead to one gaining a greater understanding of the environmental benefits, if any, of CO2 reforming.

3.1 Methanol Synthesis.

CO2 reforming when used in parallel with steam reforming can produce synthesis gas with a CO/H2 ratio suitable for methanol synthesis or in Fischer-Tropsch synthesis. The all-over methanol synthesis process enables, theoretically, 0.66 moles of CO2 to be mitigated per mole of CO2 consumed in the initial reforming stage. A 66% reduction of CO2 per mole of CO2 reacted seems a favourable result in terms of CO2 mitigation. Methanol is a very useful commodity, with a worldwide annual production of approximately 30 million tonnes [7,9]. Industrially methanol is synthesised in a process where synthesis gas is produced solely by the steam reforming of CH4 [7]. If all the methanol production in the world were to be shifted to a process which combined CO2 and steam reforming, 10 million tonnes of CO2 could be consumed in this process. This would correspond to the mitigation of 6.6 million tonnes of CO2 annually. However this amount of CO2 is rather insignificant in comparison to global CO2 emissions; excluding deforestation and land use change CO2 emissions amounted to 23.9 giga tonnes in 1996 [10]. Therefore an equivalent reduction in global CO2 emissions of 0.0027% is possible by producing methanol via the CO2 reforming of natural gas. Unless vast new markets are created for methanol, this method does not constitute a viable potential method of CO2 mitigation.

3.2 Fischer–Tropsch Synthesis.

Fischer–Tropsch synthesis date back to the nineteen twenties when Fischer and Tropsch first published results concerning the reaction of H2 and CO over Co, Ni and Fe catalysts to produce paraffins, olefins, waxes and oxygenates. The present and, most likely long term, application of the Fischer–Tropsch (FT) process concerns the conversion of natural gas to liquid transportation fuels (green diesel). The advantage of green diesel fuel over more conventional diesel is that green diesel has a higher cetane rating. Green diesel also contains virtually no sulphur compounds and is low in aromatics, thus greatly reducing soot and particulate emissions. The FT process is highly exothermic: the heat released per mole of CO is approximately 1000 KJ (if one assumes the composition of the end product is primarily C4H12). From an engineering aspect this highly exothermic reaction causes a number of problems in the design of an effective FT reactor [11]. However, if this heat can be rapidly transported from the reactor to heat exchangers it can be used to provide energy the endothermic CH4 reforming reactions (3 and 6). The calculations carried out in this study show that the all-over reforming and FT process is slightly endothermic (AH = 23 KJ). A small quantity of CH4 combustion is therefore required to drive the all-over process. This occurs at the expense of 0.05 moles of CO2 per mole of CO2 consumed in the reforming-FT all-over process. Therefore, for every mole of CO2 which is consumed in these all-over process, 0.95 moles of CO2 can be mitigated. This method however only offers an effective method of short-term CO2 mitigation (or fixation), as the green diesel will eventually burn in an engine consequently releasing the “fixed” CO2 back into the atmosphere.

3.3 Carbon Production.

The all-over process of CO2 reforming followed by carbon production is an energy efficient process at 773K. The production of carbon enables 1 mole of CO2 to be mitigated per mole of CO2 reacted initially in the reforming reaction. The carbon formed, in principle, can be used for a number of purposes; for example as an adsorbent or as a catalyst support. The carbon could also be used, in theory, in the production of synthetic diamonds. Ni/Fe alloys, which catalyse the diamond synthesis reaction, are also active for reaction (9) (i.e. carbon production from syngas) [12,13]. However, if the aim is solely to remove CO2 from a flue gas and the cost of CH4 required is not a serious factor, the carbon formed can be disposed of easily.

If we consider this all-over process as a suitable potential method of CO2 mitigation it becomes interesting to consider types of catalyst which can be used to carry out the CO2 reforming and C production reaction steps.

3.4 CO2 reforming.

The CO2 reforming of CH4 has been extensively studied in the literature. The most active catalysts contain either the active phase Ni, Co, noble metals or Mo-C. A review of these catalysts is carried out elsewhere [8]. One of the main problems with CO2 reforming is the risk of catalyst deactivation due to coke deposition. This will also be discussed [8].

Acknowledgement.

This study was funded by the EU RUCADI project (BRRT-CT98-5098).

References.