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Abstract

Travel demand, traffic flow and land-use models are typically modeled in a decoupled way, i.e. each of the components
is modeled separately assuming the others are fixed. Moreover, the models are often developed by different groups for
different contexts, requirement, etc. In this paper we present a prototype of a software framework which allows the user
to develop an integrated simulation of a transportation system and also to link additional models to the new simulation
in a standardized way . We use an agent-based approach as the basis of such a model. Integrated transportation system
models allow model users to overcome the limitations of traditional aggregated, independent transportation models,
particularly with respect to sensitivity to behavioral aspects of the travelers. Another requirement, which the software is
to satisfy, is the interoperability of models developed in the new framework with legacy models. By interoperability we
mean, that any component of the of the model can be interchanged by a legacy software and be used for the integrated
simulation. This would allow disparate research groups working on modeling different aspects of a transportation
model to plugnplay their models into the framework and test those as a part of an integrated model of an entire system,
providing a benefit to researchers, modelers and institutional users of such models.
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1. Introduction

There are several confluent factors in the transportation community which have influenced the devel-
opment of a new kind of tool to answer questions about the transportation system. Historically, existing
transportation-related models have looked at different aspects of the transportation system (travel demand,
traffic flows, emissions, etc.) independently from each other. When the realization developed with the trans-
portation community that these phenomena needed to be modeled in an integrated manner, attempts were
made to link these unrelated models into a unified system. The integrated solutions produced have fre-
quently been either inflexible, non-modular, or low performance. There was a need for the different models
to inter-operate with one another to answer these questions about a transportation system, but transportation
models generally lacked a common framework to do so in a straightforward manner.
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The framework being developed to address these needs is called: POLARIS (Planning and Operations
Language for Agent-based Regional Integrated Simulation). It has two major conceptual components. First,
a high level agent-based modeling language targeted specifically at transportation - a minimalistic set of
concepts, building blocks, and symbols which can be utilized to succinctly describe all possible elements
of a transportation system. Second, a framework and SDK (software development kit) which facilitates the
development, execution, and review of a model written in such a language.

The user community envisioned for POLARIS is broad, including those from a wide variety of trans-
portation research disciplines and those involved in all phases of the transportation model development pro-
cess from design to application. Transportation researchers will use POLARIS to test and validate theories in
an integrated environment quickly and easily as well as refine and expand the transportation ontology model.
Integrated transportation model developers would utilize POLARIS to weave together disparate model com-
ponents developed by researchers and bring in new technologies in addition to connecting existing models
of interest. Transportation modelers will apply models created by the integrated model developers and solve
real world problems using POLARIS. Software developers working in the transportation arena will work
to improve performance and increase usability as well as utilize the low level libraries to aid in functional
programming or memory management tasks.

The design philosophy of the POLARIS modeling framework is founded on several tenets which serve
to maximize ease of use and flexibility. First, give developers tools which will ease their model develop-
ment efforts, however do not force them to be used. This is a common philosophy in many programming
languages, advanced features are offered, but so are the low level concepts needed to assemble competitive
features from scratch if the user is dissatisfied with the default implementation. Next, suggest to developers
standardized symbols and structure which can be used to facilitate communication within their model com-
ponents as well as among other models. A simple example is a term such as location (intersection, transit
stop, point on a street, parking lot, etc.), nearly every software has its own version (likely with nearly iden-
tical implementation) of the same concept; in POLARIS, this concept is defined once and any applications
written using it would use this same definition. This means that any developers wishing to interface with
any POLARIS application need only to look at one central place in POLARIS to understand what location
means in software terms. Next, using a fixed API, abstract low level details from high level ones such that
core developers optimizing low level operations can work independently of researchers implementing high
level concepts. This is a common thread in many well-engineered software APIs, it allows a model devel-
oped in POLARIS to be able to achieve high performance as well as re-usability, code clarity, and short
development times. Finally, and perhaps most importantly POLARIS is founded on an ontological base
which allows for extreme modularity. Within the POLARIS ontology, extremely complex components of
the transportation system (such as human travelers) are broken down to their atomic parts and re-organized
in a hierarchy. This is done to a degree such that a customized component created by one developer can
understand another customized component created by another developer through understanding the more
primitive (and more standardized) ancestry of the other component. As an example, consider a router: re-
gardless of which algorithm is used internally, a user should be able to count on the fact that it will deliver,
as a minimum, the path from a start location to an end location on a given type of network.

2. Using an ABM Approach to Model Transportation Systems

The conventional approach to modeling transportation systems is to split the system into distinct com-
ponents (land use, network, travel demand) and model each of the components by fixing parameters and
passing results between components. A typical example of this approach is the four-step travel demand
model. The biggest disadvantage of those models is lack of behavioural realism [1], as they model travel
as flows between aggregate points rather than the outcome of many individual decision to move from place
to place. The methodologies developed within the agent-based (sometimes called multi-agent) modeling
community provide a good basis for developing an interoperable disaggregated simulation framework for a
transportation system to remedy these deficiencies.

The essence of an agent-based simulation is the concept of agents, which have a set of behaviours that
govern the interactions among the other agents and the environment. This is a relatively new field of re-
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search, however, agent-based methodologies have proved to be a powerful tool which allows users to model
a vast array of phenomena, such as political and social processes [2], software systems [3], manufacturing
systems [4], urban dynamics [5], business applications [6], geographical systems [7] and economics [8].
The agent-based methodology allows the construction of a model of transportation systems in which trav-
elers can have behavioral responses and sensitivity to the actions of other agents and the overall system
performance. In contrast with a traditional four-step model, an agent-based approach leads to an out-of-
equilibrium solution [9]. The issue of calculating an equilibrium solution when travelers are modeled as
heterogeneous agents with individual behaviours is not very well explored. An attempt to develop several
equilibrium strategies while developing the New York City transportation model is presented in [1]. How-
ever, the biggest advantage of an agent based approach is ability of understanding how patterns are formed
and what parameters effect the formation of those patterns. There was a shift in the transportation commu-
nity with in last 20 years towards disaggregated multi-agent simulation models, specifically in the area of
activity-based models.

Fig. 1. Traveller Agent Design

Figure 1 shows an example of a traveller agent design. This is a typical skeleton used to design an
intelligent agent [10]. The agent has several behavioural aspects (green box), which are associated with
the agents state. For example, while in driving state a traveller agent might have the following behavioural
aspects: (i) Car Following, (ii) Lane Changing, (iii) Intersection Passing, (iv) Traffic Jam Detection, etc..
Each behavioural aspect is a set of actions which is available to the agent at a given state. At each time
step (tic), the agent decides on actions (performs planning) based on the current percepts, which are part
of the step function (purple box) as well as the belief state (red box) and executes the scheduled actions.
The belief state is the model of the agent’s knowledge about the environment (network travel times, transit
schedules, etc.). The belief state can either be learned as a result of previous percepts or can be prescribed
by a modeller. The state of the agent, the belief state, the planning routines as well as behaviours available
to an agent are spread over several components. The reason it is not designed as a single object is that the
interoperability requirement discussed in the 4 section can be met. The percepts of the agent are modelled
using a publish subscribe pattern [11] and to be handled by the POLARIS communication system.

In addition to the artificial intelligence and agent-based modeling communities, POLARIS also pulls
heavily from the computational science fields. Communication in POLARIS was inspired by standards in
computer networking. Concepts such as TCP/IP demonstrates how it is possible for two extremely different
machines can talk with each other quickly with a minimum of common understanding and BSD sockets
demonstrate how a relatively simple user API can be used to implement a specific communication. In many



4 V. Sokolov et al. / Procedia Computer Science 00 (2012) 1–7

ways POLARIS is designed partially as its own operating system: it manages memory, schedules execution
processes, protects data regions, performs inter-process communication, and does so while providing a stable
API to the developer. Therefore, many techniques used for creating fast, secure, and effective operating
systems are being used in the low level core library. Finally, a strong knowledge of processor design,
automated parallelization, and advanced generic programming techniques are utilized in concert to provide
an API to the low level functionality which is extremely high performance as well as very generic and simple
to use.

3. Architecture Overview

The prototype POLARIS framework addresses the major requirements of a flexible, extensible, agent-
based transportation simulation environment. POLARIS is organized as a series of six components, which
address different aspects of the framework. The components include the following, as can be seen in Figure
2: (i) TOM - Ontological representation of components in a transportation system, (ii) TOL - Basic set of
pre-configured simulation objects, (iii) TSF - Workspace for user-defined simulation objects (extension to
TOL), (iv) EXM - Simulation initialization and execution, (v) IPC - Low-level communication operations;
contains ontological representation of interoperable objects and a user API for communication and (vi) COR
- Low-level data operations; contains utility functions and generic data containers, memory management,
execution control.

The Figure 2 shows how the components relate to each other, and how they would be used by different
levels of POLARIS users. A POLARIS core developer, for example, would have access to all levels of the
code-base, and at the deepest level would likely including making changes to the Core Library (COR) to
optimize low-level details, or handling some aspects of the IPC module, such as management networked
communications, adding new communication routines, etc. At a slightly higher level of abstraction, a core
developer could also make changes to the object model (TOM) and add new classs to the object library
(TOL). Areas where only a core developer would have access are highlighted in blue. The next class of
users would be model developers, who are able to create new objects in the TSF and also are generally
required to write specific interchange routines in the IPC for whatever external program is being hooked in.
Model developers are also likely to write the execution module for a specific model type. Model developers
would access framework areas highlighted in red. Finally, the highest level of user would be the model
user, such as a modeler at a state planning agency, or similar. These individuals would have access only to
the specific model implementation developed by a model developer, in effect using one instantiation of a
POLARIS model.

Fig. 2. POLARIS Framework Design

The fundamental concepts underlying all POLARIS transportation simulation models are defined in the
Transportation Object Model (TOM). This is a highly abstract set of interfaces which determine the ob-
ject inheritance hierarchies and capabilities which exist in general transportation models, and how these
objects/concepts relate to each other. The TOM is therefore organized as a high-level, non-exhaustive on-
tology, which attempts to define the base objects and characteristics from which any element which would
exist in a simulation could be defined. All objects in the TOM derive from the base Element class, which
represents any object or concept in the TOM. The TOM is organized in such a way that the requirements
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fundamental to an object are passed to inherited object, while the capabilities of the derived objects are
passed up to the base element. This is slightly different from the usual object-oriented class structure, where
derived objects inherit the requirements of base object only. In other words, in OOP, a base class generally
has no information about the behavior of a derived class, but in the TOM a base object actually gains access
to the functionality of derived objects. An illustrative example is shown in Figure 3 below. The Figure 3

Fig. 3. Illustrative Example of Transportation Object Model (TOM)

shows the Element class as the base of all other objects in the TOM. Therefore, as stated above, while all the
objects in the model derive from Element, declaring a simulation object of type Element in the simulation
framework actually gives that object access to all functionality of every object in the TOM. The highest level
split in time is between an Entity and a Faculty. By POLARIS convention, an Entity is simply something
that can exist outside of another element while a faculty can only exist as a member variable within another
element. From the example above, an object derived from the Agent class can be created within the EXM,
while an object of type Objective Faculty could not, and is in fact specified as a member of an Agent or
Agent-derived object. For this reason faculties in the TOM tend to represent either Entity capabilities, con-
cepts or complex data members, while the Entities tend to be the actual things in a transportation simulation,
something which has an id.

The power of this approach is that the TOM defines a set of core, useful concepts in common across
most transportation simulations, which attempt to define the objects and behaviors at a fairly abstract level.
This allows developers to create specific instances of these fundamental objects and use them in different
ways depending on the needs of the specific model instance. So, one modeler may decide to allow traveler
agents to have limited cognitive ability and derive their class as Traveller: Proto-Agent, while another may
want to allow travelers to learn from simulated experiences and therefore create a Traveller : Agent, which
gains the abilities of the Proto-Agent, but also has access to the Cognitive Faculty of the Cognitive Agent.
This flexible, extensible structure is allowed due to the unique design of the TOM.

4. Interoperability in Transportation Simulation

One of the core motivations for POLARIS is to have a centralized standard and communication frame-
work which can connect independently developed modules or processes. This is accomplished by using
the TOM in concert with two standardized communication spheres. The first encompasses all intra-agent
communication (that is, the communication of an agent with other parts of itself). The second sphere covers
all inter-agent communication (that is between an agent and the environment or another agent).

Having a system to handle communication within an agent may seem unusual as it seems intuitively true
that an agent should at a given time have access to the totality of itself. However, the reality of modeling
an agent using a programming language means that there will be artefacts not encountered in the real world
such as the presence of parallel processing, importance of data concurrency, and necessity of intermediate
attributes without a real world equivalent. POLARIS is designed first and format as a modeling language,
therefore it is important to aid the modeler with these programming-related artefacts. The intra-agent com-
munication interface includes concepts such as exposing simple consistent interfaces to other developers,
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ensuring that member data access is rationally designed and strongly enforced, and finally (as POLARIS is
designed as a parallel application) that data is thread safe where necessary.

The interoperability, modularity, and agent based design of POLARIS are all enhanced by the robust
inter-agent communication system. The primary goal with this API is to ensure that an agent can talk
to any other type of environment or agent even if that agent might only be a virtual wrapper around an
external process. This is accomplished by requiring all agents to maintain a locally customized (yet heavily
standardized) version of the same communication module and ensure that agents are never able to see more
than the interface dictated by the other agent’s communication module. Furthermore, in any communication,
the requestee dictates the terms of the communication using only POLARIS components defined in the TOM
and the requester merely initiates the communication. Requests need not be fulfilled immediately or even at
all, though it behooves the developer to provide this kind of feedback to the other developer.

The nuts and bolts of this inter-communication are written in terms of direct memory access (for intra-
process), memory mapped files or conventional files (for inter-process, intra-machine), and socket to socket
communication (for inter-process, inter-machine). Depending on the specific external application which
will be communicated with, a more or less extensive translation routine from that application to POLARIS
terminology will need to be written. It is the goal of the POLARIS project to be able to easily communicate
with other major software from every corner of the transportation modeling realm, possible candidates
include DYNASMART-P, TransCAD, CORSIM, UrbanSim, Synchro, MOVES, and others.

5. Conclusion

After a rigorous conceptualization and design process, POLARIS is initially being built as an open
source C++ API and collection of libraries to meet the needs of current and future integrated transportation
model developers and users. This is being accomplished by combining concepts from the general agent-
based community with a new transportation-specific object model and implementing them using a highly
performance optimized library of core operations and advanced concepts from the software engineering and
design community. Users will create their models by utilizing the API in a IDE such as Microsoft Visual
Studio and linking with these libraries. The code documentation will be extensive and produced in an easy-
to-understand format by a tool such as Doxygen. As the framework evolves from its initial release, usability
will continue to increase through the wrapping of many of the core concepts within a specially designed
domain-specific high level language and graphical user interface. These improvements will provide a strong
interactive help system, gentle enforcement of program structural concerns, additional tools to aid in the
debugging of the model, and sub-programs usable for simulation data visualization. In addition, the concepts
in the TOM will continue to evolve as the transportation research community determines what components
are the strongest and which might be removed in favour of new categories. It will be an ongoing goal to
promote a centralized repository where users can submit, critique, and pick up model fragments written in
POLARIS in an effort to provide the best possible default user libraries as well as share ideas about how
they might be improved or utilized in currently unknown ways.
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