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Can we run the planet in a sustainable fashion,
while maintaining our standard of living, and
allowing other nations to reach ours?

... and what does physics have to do with that?



The public is optimistic ...

In a globescan poll (Nov 2011)

71% thought their country "could almost entirely replace coal
and nuclear energy within 20 years by becoming highly
energy-efficient and focusing on generating energy from the
Sun and wind".

http://www.globescan.com/news_archives/bbc2011 energy/



Even banks are optimistic ...

HSBC advertisement in Edinburgh airport
“0.3% of solar energy on the Sahara could power Europe”

True, False, or Fantasy ?



Principles of physics:
How to be an armchair expert

= The right kind of theory is better than large amounts of
incomplete data

— Global versus detailed modelling — not losing the wood for the trees
— Linear response + corrections

= Thermodynamics

— The global climate is well mixed — “equipartition”

— Sources of renewable energy are dispersed and all have about the
same (low) energy density

— Free energy is not “free” --- the role of entropy
= Cost

— The importance of money
— Money is really energy in disguise




What this lecture i1s about
... and what not

1. Thermodynamics of the planet
— the large scale physics of the environment

2. Sources and sinks of renewable energy
— why renewables have to be deployed on country-sized scales

3. Headroom for innovation on transformative energy
technologies

— generation, storage, use, and transmission

No nuclear

No resource use, water
No policy

No climate change ....



Do you believe in global warming?



Temperature Anomaly (°C)
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Fluctuation? Correlated ? Causal ?

Global Land—Ocean Temperature Index
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Measured at Mauna Loa, Hawaii
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A good theory Is always the best thing to have

Svante Arrhenius
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Arrhenius’s model for the greenhouse effect
(a) No atmosphere

lSU Incident flux 341.5 Wm-2 in the “hot” solar spectrum

Radiated flux at temperature of the surface
Stefan-Boltzmann constant
0 =5.670373(21)x108 W m=2 K™,

18005 Reflected solar flux ~ 30%

Energy balance gives T, = 255K =-18C
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Arrhenius’s model for the greenhouse effect
(b) Opaque atmosphere [“Venus’]

1
I ZS@D&
- Surface temperature T, =303 K=+30C '
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Arrhenius’s model for the greenhouse effect
(c) Partially transparent [“Earth”: € = 0.78]

- Surface temperature T, =288 K = +15C '
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Greenhouse gases

= Model is vastly simplified but it is very good because it
depends on “sum rules”

= Atmosphere is “well-mixed”

= Few parameters q, €, o are very well known

= Doubling CO, changes Ae by 0.02

= Changes radiative “forcing” by 3.7 Wm= (~1%)

= Predicts AT, = 1.2 K (assuming the system is linear)

= Nonlinearities (“feedback”) appear to be largely positive

— mostly H,0, some albedo, possibly methane, clouds?

= Consensus AT, = 3 K from modern global climate models
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Sources of renewable energy and the
needs of the planet



Solar: the energy input

= Solarinsolation is the major energy input to the planet
= Mean radiative solar flux =341.5 W/m?

= This energy gets redistributed into other degrees of freedom

thermalised into infra-red --- “heat”
wind energy

wave energy

rainfall

How much do we need ?

USA average power consumption = 3 TeraWatt
5 billion microwave ovens
Solar flux on 10,000 km? = Delaware + Rhode Island

15
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Energy usage per m?
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Renewables must be deployed on country-sized scale
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Concentrating Solar Resource
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3 TW @ 300 W/m? (Full insolation in AZ)

e



\
3 TW @ 20W/m? (Concentrated solar in desert)
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3 TW @ 5W/m? (photovoltaic)




3TW @ 0.5 W/m? (photovoltaic
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Lesson:
Renewables need country-sized deployment

"= Premium on efficiency, manufacturability and cost
and geography

= What about wind, hydro, wave .....



Wind energy

Enercon E-126 7.58 MW / 6000 Tonnes

Spacing 6-10 times rotor diameter (126
m for E-126; radius then 360m)
[Spacing is a consequence of fluid
dynamics]

Area/rotor = 4x10° m?

= Power /area =7.58 x 10°/4x10° =18
Wm-—2

= Best practical capacity 35% = 6 Wm~2




Hydro iIs a ““point source”

Hoover dam: annual energy
generation 4.2 x 102 kwh D)

= How much power available?
— Annual Rainfall: 300 cm in Colorado = 300 kg/cm?
— Energy stored = mass x g x height = 300x10x1000 = 3x 10% Jm™
— Annual average power/area =0.3 Wm™

= How much generated?
— Area of Colorado : 270000 sq km = 2.7 x 1011 m?

— Power generated per unit area of Colorado by hoover dam = 4.2x10° x
3 x10°/(2.7x10* x 3x107) =1.5 x103 W m™

= Cost ?

(1) Data from Bureau of Reclamation. http://www.usbr.gov/Ic/hooverdam/fags/powerfag.htmi.



http://www.usbr.gov/lc/hooverdam/faqs/powerfaq.html�

Renewable sources are diffuse

Power density W/m?

Concentrated solar power (desert) 15-20
Solar photovoltaic 5-20
Biomass 1-2
Tidal pools/tidal stream 3-8
Wind 2-8
Rainwater (highland) 0.3

... and of course they all require energy to construct




The (energy) cost of making things



The “hamburger rule”

Ground beef - $10 / kg

Honda Civic 1.8
Price $16000
Weight 1210 kg

$13/kg




The cost of things is their energy input

Price/S Energy Implied cost of Time to
consumed kWh  energy S/kWh  breakeven at
10c/kWh
1 kg Steel” 1.00 7.5 0.13
1 kg Al 2.50 16.2 0.15
1 kg hamburger 10.00 1.9X50() 0.11
1 liter Diesel 0.80 10 0.08
1 kg wheat flour 1.00 4.3 0.23
E-126 wind S10M/6000 3.5 years
turbine @ ton=1.50
Solar panel S1/Watt 4 years

*1/3 of the cost of steel is the energy input

(1) Energy factor — David Pimentel 1997
(2) Bloomberg New Energy Finance's Wind Turbine Price Index 7 Feb 2011



The “S-curve’ for solar

Figure 4: U.S. Capital Investments in Solar Energy*
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Recap ....

= Equipartition of energy amongst sources
Power densities for renewables are all very similar

Payback time for energy used in construction is a substantial fraction
of the lifetime

= Energy is really money

This is the 2" law of thermodynamics, the “no-free-lunch”
theorem

We will never (again) make energy cheap

However, the financial conditions are now in place for a
transition to a sustainable energy economy

Money is really energy



And now to technology ...

= Renewable sources must be country-sized

Premium on Cost, Manufacturability, Efficiency

= Energy uses are typically point source
People, cars, factories, computers ....

= (Clusters of technologies have societal advantages
photovoltaics + storage => no power grid
photovoltaics + storage + refrigeration => food storage, vaccination
photovoltaics + storage + refrigeration + lighting => education




How much headroom for new technologies ?



Transformative technologies

— Photovoltaics for electricity generation
— Ultracapacitors/batteries for electrical storage

— Thermoelectrics, magneto/electro-calorics for
electrical refrigeration

— Light emitting diodes for electrical lighting

If these technologies are cheap and efficient we have
the best possible local solutions for energy use



Why electricity?

By 2100 (say) we will be relying principally on the

cheapest and most abundant source of energy: direct
solar

Renewable energy sources are diffuse, and solar to
electric is the most efficient in principle with global

impact (there are many special cases that can have
local impact)

Solar to fuel? — why introduce an extra source of
inefficiency into the energy cycle?




Transformative technologies

— Photovoltaics for electricity generation
— Ultracapacitors/batteries for electrical storage

— Thermoelectrics, magneto/electro-calorics for
electrical refrigeration

— Light emitting diodes for electrical lighting

— Superconductors for electrical transmission/
motors

If these technologies are cheap and efficient we have
the best possible local solutions for energy use




\
Chevy Volt - The first Plug-in Hybrid Electric Vehicle

Battery System

Size 5.5-foot-long T-shaped,;

Mass (kg) 198.1

Cells 288 prismatic

Combined Up to 350 miles (~40 miles by battery
electric/extended driving only)

range

Warranty Eight years/100,000 miles

energy 16 kWh

battery price ~$8,000 (~$500/kWh)




Energy storage density of advanced batteries

WattHours f Kilogram
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50 100 150 200 250 300 350 400 450
WattHours/Litre

gasoline is 12000 Wh/Litre
about a factor of 60 by weight
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Fundamental Limits for Electrical Energy Storage

"= What is the limit: measure storage energy in
eV/Angstrom?

= 1eVA3=1.610"Jm>3=160 MJ/L (megaloules per
liter)

= Liion battery 7.5 108 Jm=3=0.75 MJ/L
= Diesel : 38 MJ/L
= Liquid H, : 10 MJ/L
Since there are problems with moving ions around

(speed, material changes, etc.) what can you imagine
with the smallest convenient particle — the electron ?



Polar heterostructures demonstrate there iIs a
possible solution?
A Ohtomo & H Hwang, Nature 427, 423 (2004)
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= Once voltage offset = bandgap, chemical potential of carriers
controlled by external circuit

= Carriers are lattice-constant sized, so in principle density high

= There are a few issues with materials growth, defects, reconstructed
surfaces etc ... currently a fictional and extremely expensive device



Science fiction continued ....

One can imagine a structure of a combined PV/storage device in
a material with m“=1 and € = 2 that will
— efficiently absorb photons
— dissociate the resulting excitons instantly
— store charge at a density approaching that of gasoline

So we solved PV and storage ....

Next ?



The cathode contains an oxide, The anode contains graphite, carbon

What iS th e path fo rward ? carbon additives and PVdF binder N add?tjv d 'inF binder

= At |least two orders of magnitude
below optimal performance and too
costly

The cathode comprises an Al current

= Devices are unnecessarily complicated, collector coated on both sides. The
. . anode comprises a Cu current collector
operation is poorly understood, and coated on both sides.

manufacturing difficult to control

= Major discoveries of new materials
classes are rare and random

= Transformational technologies depend
on better understanding and control of
materials at scales ranging from the

atomic to the mesoscale < > | <
Cathode Separator Anode

v

Photo image of an 18650 cell
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So we need a roadmap:
Moore’s Law for materials ?

Transistors
Per Die

| 10
0 # 1965 Actual Data 16 2G At

10°- m MOS Arrays A4 MOS Logic 1975 Actual Data 256M >12M

108 1975 Projection T itanium™

Memo afim: 4
107 ; ry Pentium® I
A Microprocessor Pentium®ll
106 Pentium®
105

104
103.
102
101

100"*5#FFWW‘WW‘FWFH‘H‘FHW1
1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Not so much the logarithmic scale, but the predictability
Also, a single metric defines performance and cost




The consequence of understanding is prediction:
Moore’s Law for Si vs. current strategy for Li-ion batteries

Transistors

Per Die
1010 :
10° :lqgcf:if::a::ftamos Logic 1975 Ac t < Unk-HV-HC/ Li metal
B ij:c“on 4 Safe and reversible cycling of Li metal
" Memory Market entry >2021
o A Microprocessor Unk_HV_HC / Gr-8|
105 o Discovery of high voltage electrolyte >4.8 V
104 K> 10K gike Discovery of reversible unknown high-voltage
10° | high-capacity cathode: 250 mAh/g @ 4.8 V
102 Market entry > 2019
b2 ALi,MXO, / Gr-Si
1960 1085 N Discovery of path to reversible multi-electron

cathode material with 4V cell voltage
Market entry > 2017
B LMR-NMC / Gr-Si
Stabilization of silicon
Market entry > 2015
& LMR-NMC / Gr
Stabilization of LMR-NMC
Market entry > 2013

® LMO/Gr
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Modelling - its In here somewhere ....
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Nanoscience by the ton

We need a road map for materials development that enables us
to escape primitive technologies and have a predictable path
forward — this is the science challenge of the next few
decades

“Top —down” engineering is not the solution - for example:

— 2/3 of the weight of a PHEV battery is “packaging” — control
electronics, safety engineering, casing etc.

— Most of the cost of solar panel installation is *not* the module —
power electronics and packaging, installation costs, permit fees etc.

Can we learn how to construct functional materials whose
properties are defined by precisely controlled interfaces on
the nanoscale and which may be manufactured at low cost in
enormous volume ....



Nanotechnology fabs of the future ...




.
Final remarks: Science, Economics and Geopolitics

Science: Modest Optimism

There are enough renewable sources of energy and enough
space for new technology that the problems are containable

Economics: In balance

All installations will require >billion S investments on very
uncertain technology paths

Energy is now expensive enough that renewable technologies
may not all get strangled at birth

Geopolitics: Questionable

Those countries with the greatest embedded capacity (e.g grid,
natural gas, roads, oil) will be the slowest to innovate
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